£ IDAES

a black-box modeling tool

— Machine learning approaches for
— automated building of algebraic models
? i Build models from data ready for
optimization or inclusion in flowsheet
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Consideration of alternative reaction mechanism

Incorporation of multiple thermodynamic
properties into one equation of state

: Estimation of uniquely identifiable parameters
and confidence regions
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A Supervised learning of algebraic models
A ALAMO learns linear models of features
tailored for optimization
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Reaction ldentification Parameter Estimation

Formulating the RIPE problem

Postulated reactions for target network
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HELMholtz Energy Thermodynamics

Helmholtz free energy can be related to thermodynamic properties by partial derivatives of
density and temperature. This methodology uses a dimensionless Helmholtz function

dependent on reduced density, ] T ,andinverse reduced temperature, T “YI'Y
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Toluene Speed of Sound Data

Toluene Isobaric Heat Capacity Data

Toluene PVT Data
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Using multiple data sources and thermodynamic
properties, a multi-view approach can be used to
regress a Helmholtz equation.
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Pure chemical compounds, such as water, are well-studied, but remain difficult to characterize.
These systems have lots of different thermodynamic property data that can be simultaneously
regressed for us to develop and validate our approach.
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A The pressure, volume, and temperature data is linearly related to the Helmholtz partial
derivative and with a constrained regression provides a good initial fit
A The fit to isobaric heat capacity has the lowest 'Y due to the rapid change in behavior near

the critical point
A The speed of sound is accurately measured and the regression methodology penalizes

heavily the residuals resultinginY  p

Conclusion

A With ALAMO, RIPE, and HELMET, we use advanced data modeling and leverage machine
learning techniques to regress simple, accurate models for use in algebraic optimization

A This regression toolkit extends the power of the IDAES framework to process data, or black-
box models lacking an algebraic form
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information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,
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