
Region and Cluster Representation

Aggregation to reduce spatial complexity: 

• Reduced network at the regional level

• Cluster generators into representative units

• Decision regarding generators and storage devices (e.g., install/retire, start-up/shut-

down) are modeled as integer variables.

Generation Expansion Planning Studies
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The major goal of this project is to help understanding the characteristics 

needed to develop new advanced energy generation technologies that can 

be competitive in the anticipated future market considering all sources of 

competition.
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Remarks and Future work

Stochastic Dual Dynamic Programming (SDDiP)
• The algorithm decomposes the problem by nodes in the scenario tree.

• Consists of Forward and Backward Passes.

Hypothetical case study: ERCOT

• IDAES is developing cutting-edge scalable analysis approaches that enable 

quantification of the adoption and impact of proposed generator designs.

• Current activities focusing on increasing model fidelity:
• Improving the transmission representation in the model and including the 

option for transmission expansion. 

• Developing strategies to efficiency solve nonlinear transmission models.

• Adding construction lead time to the multistage formulation.

• Extending parallel SDDiP to address risk-averse problems and stage-wise 

dependent problems.
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Modeling strategies to tackle multi-scale nature

Time-scale Approach

Sampling to reduce temporal complexity: 𝒅 representative days per year

Years: 𝑡 ∈ 𝑇

Hourly Sub-

period: 𝑠 ∈ 𝑆

Representative 

days: 𝑑 ∈ 𝐷

Clusters: 𝑖 ∈ 𝐼𝑟

Regions: 𝑟 ∈ 𝑅

Multistage stochastic programming formulation

• Handles both strategical (e.g. fuel 

price uncertainty), and operational

(e.g. different profiles of representative 

days) uncertainties.

• Number of scenarios grows 

exponentially with the number of 

stages.

Forward Pass

• Scenario Sampling

• Solve subproblems for a subset of 

the scenarios.

• Get the Statistical Upper Bound 

(for a certain confidence level)

Backward Pass

• Solve for all children nodes of the 

nodes in the sampled scenarios.

• Relaxed subproblems.

• Benders cut takes the weighted 

average of the coefficients for 

the cut based on the conditional 

probability

• Solution of node 1 is the Lower 

Bound

• Assumes that the scenario tree is stage-wise independent.

• Cuts can be shared between all nodes in the same stage

• Avoid the "curse of dimensionality”.

SDDiP has potential for parallelization

Synchronization

Synchronization

Test algorithmic capabilities and performance

• Number of scenarios ranging from thousands to billions.

• Problem size ranging from millions to quadrillions variables and constraints.

• All solved in less than 24 hours.

These results show how powerful SDDiP can be for practical large-scale

multistage stochastic programming problems.

Reference case (with 
natural gas price 

uncertainty) shows no 
significant expansion 

in 1st year.

No nuclear case (with natural gas 

price uncertainty) shows nuclear 

plants being replaced by NG plants.

No nuclear case (with carbon tax 
uncertainty) shows nuclear plants 

being replaced by NG plants.

Risk of having steep 
carbon tax fees makes 
the optimization invest 
less in NG and more in 
renewable sources in 

the 1st year.

ERCOT generation capacity by source in the 1st year

ERCOT generation capacity by 

technology in the 1st year

By considering carbon tax as an 

uncertain parameter, the value of 

stochastic programming is $2.18 

billion, which is the savings one can 

achieve in the long term.

$232.47 billion $234.65 billion

Here-and-now decisions vary according to the scenario tree

Value of stochastic 

programming

Problem statement

INPUT

• Energy source (coal, natural 

gas, nuclear, solar, wind*);

• Generation and storage

technologies;

• Location;

• Nameplate capacity;

• Age and expected lifetime

• Emissions

• Operating and investment costs

• Operating data 

• Renewable generation profile.

• Load demand

OUTPUT

• Location, year, type and 

number of generators

and storage units to 

install; 

• When to retire them;

• Whether or not to extend 

their lifetime; 

• Approximate power flow 

between locations; 

• Approximate operating 

schedule 

Minimize the expected 
net present cost.


