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Data Driven Model Learning

Reaction Identification Parameter EstimationPurpose

Case Study: Chemical Looping Combustion
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Feature selection

Select subset that balances model fit against model complexity

Error maximization sampling

Derivate free design of experiments
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Corrupted six hump
camel function ALAMO surrogate model

Machine learning approaches for 
automated building of algebraic models

Consideration of alternative reaction mechanism

Estimation of uniquely identifiable parameters 
and confidence regions

Obtained via supervised learning algorithm

• Supervised learning of algebraic models
• ALAMO learns linear models of features 

tailored for optimization
• RIPE learns reaction network from process 

data
• HELMET learns a Helmholtz energy equation 

of state from thermodynamic properties
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𝒌𝒍𝒊𝒕 0.77 1.15

𝒌 0.8 ± 0.04 1.2 ± 0.1
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𝒌𝒍𝒊𝒕 0.62 1.66

𝒌 5.6 ± 0.3 1.7 ± 0.03
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Build models from data ready for 
optimization or inclusion in flowsheet
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Incorporation of multiple thermodynamic 
properties into one equation of state

ResidualIdeal

HELMholtz Energy Thermodynamics
Helmholtz free energy can be related to thermodynamic properties by partial derivatives of 
density and temperature. This methodology uses a dimensionless Helmholtz function 
dependent on  reduced density, 𝛿 = 𝜌/𝜌𝑐 , and inverse reduced temperature, 𝜏 = 𝑇𝑐/𝑇.

𝑎(𝜌, 𝑇)

𝑅𝑇
= 𝛼 𝛿, 𝜏 = 𝛼𝑜 𝛿, 𝜏 + 𝛼𝑟 𝛿, 𝜏

Using multiple data sources and thermodynamic 
properties, a multi-view approach can be used to 
regress a Helmholtz equation.

ResidualIdeal

Case study: water, toluene, & carbon monoxide

• The pressure, volume, and temperature data is linearly related to the Helmholtz partial 
derivative and with a constrained regression provides a good initial fit

• The fit to isobaric heat capacity has the lowest 𝑅2 due to the rapid change in behavior near 
the critical point

• The speed of sound is accurately measured and the regression methodology penalizes 
heavily the residuals resulting in 𝑅2 ≈ 1

Pure chemical compounds, such as water, are well-studied, but remain difficult to characterize. 
These systems have lots of different thermodynamic property data that can be simultaneously 
regressed for us to develop and validate our approach. 

Formulating the RIPE problem
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Solution Details

where 𝑚, ℎ index over reaction mechanisms and stoichiometries
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Postulated reactions for target network

Conclusion

• With ALAMO, RIPE, and HELMET, we use advanced data modeling and leverage machine 
learning techniques to regress simple, accurate models for use in algebraic optimization

• This regression toolkit extends the power of the IDAES framework to process data, or black-
box models lacking an algebraic form


