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Science-Based Design of Experiments (SBDoE) 
Identifies the Most Informative Experiment

Experiments should be designed with a 
statistic design criterion!
• What, where, and when to measure? 
• How many experiments?

First-principle model

Gradient-based optimization

Science-Based DoE Systematically Designs Experiments

Case Study: Kinetics

Case Study: Rotary Bed System (PDAE)

Adding Measurements Increase the Information Content

Pyomo.DoE Code

Reference: Wang, J., & Dowling, A. W. (2022). Pyomo. DOE: An open-source package for model-based design of experiments in Python. AIChE Journal, 68(12), e17813.
Kusumo, K. P., Kuriyan, K., Vaidyaraman, S., García-Muñoz, S., Shah, N., & Chachuat, B. (2022). Risk mitigation in model-based experiment design: A continuous-effort approach to optimal campaigns. Computers & Chemical Engineering, 159, 107680.
[1] Figure from Adobe Stock, [2] Figure from Wikipedia
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Measurement Optimization Framework

Name/Cost Installation($) Measure($/time) 
𝐶'	Static 2000 0
𝐶( 	Static 2000 0
𝐶) 	Static 2000 0

𝐶'	Dynamic 200 400
𝐶( 	Dynamic 200 400
𝐶) 	Dynamic 200 400

Aim: Minimize parameter 
uncertainty

Fisher information 
matrix (M)

A- and D-optimality Select Different Measurements

• 5 parameters (5 × 5 FIM)
• 110 timepoints / measurement
• 9 static-cost measurements
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SBDoE maximizes Fisher Information Matrix 

More 
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s. t. 	 𝐌 ≈ 𝐐%𝚺."!𝐐
         Model Equations 
         (DAEs, PDAEs…)

SBDoE Optimization Problem
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1st  order Sensitivity Matrix
𝚺. =

𝜎&(𝑦!,/! , 𝑦!,/!) ⋯ 𝜎&(𝑦!,/! , 𝑦0,/&)
⋮ ⋱ ⋮

𝜎&(𝑦0,/& , 𝑦!,/!) ⋯ 𝜎&(𝑦0,/& , 𝑦0,/&)

Error Covariance Matrix

4 unknown parameters 
( 4 × 4 FIM)
Algebraic variables
Differential variables 
• 3 measurements
• 8 timepoints / 

measurement

Measurements Cost

Variables:
12 continuous
381 binary
Constraints:
12 equality
1,096 inequality

MILP for max 
A-optimality

NLP for max 
D-optimality

Variables:
404 continuous

Constraints:
23 equality
1,096 inequality

𝒚: measurements  
𝜽: parameters 
𝒅: design variables

Maximize A-optimality Maximize D-optimality

Maximizing A-optimality Maximizing D-optimality

• 3 dynamic-cost measurements
• 2 either static- or dynamic-cost

GC, Thermocouple…

Two Types of Measurements (Sensors)
Dynamic-cost
• Installation cost + cost per 

measurement
• Takes money or human 

resources at every timepoint 

Static-cost (Special case)
• Installation cost + $~0 cost per 

timepoint
• If chosen, data at all timepoints are 

available
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Convex Hull

Goal: Maximize determinant or trace
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Continuous design relaxation 
guarantees convexity with 
maximization
A-, D-optimality are concave

Budgets
∑,∈A 𝑐, \ �̅�, ≤ 𝐵	

∑:∈B∑/∈𝒕( �̅�:,/ ≤ 𝐿/D/EF 
∑/∈𝒕( �̅�:,/ ≤ 𝐿: , ∀𝑑 ∈ 𝐷 

∑/6
/'"/G%)*+ �̅�:,/ ≤ 1, ∀𝑑 ∈ 𝐷, ∀𝑡 ∈ 𝒕: 

𝐃: Dynamic-cost measures

	𝐒: Static-cost measures
Static-Static

Dynamic-Dynamic

Dynamic-Static

Relaxed to only 
linear constraints
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Static-cost: 𝑇DH/
(E:5), 𝑇DH/

(:I5), 𝑇!J
(E:5),

                   𝐹DH/
(:I5), 𝐹7K

(E:5), 𝐹7K
(:I5)

USD 5000

Static-cost: 𝑇DH/
(E:5), 𝑇DH/

(:I5), 𝐹DH/
(E:5),          

𝐹DH/
(:I5), 𝐹7K

(E:5), 𝐹7K
(:I5),

                  𝑇!J
(E:5), 𝑇&L

(E:5), 𝑇&M
(E:5)

𝑧DH/
(E:5)at 124, 134, 180, 190, 200 [min]

Dynamic-cost: 

at 2, 12, 22, 32, 42 [min]𝑧DH/
(:I5)

𝑧&L
(E:5)

at 158, 210, 220 [min]

USD 11000

Static-cost: 𝑇DH/
(E:5), 𝑇DH/

(:I5), 𝐹DH/
(:I5),

               𝐹7K
(E:5), 𝐹7K

(:I5), 𝑇!J
(E:5), 𝑧DH/

(E:5)

USD 12000
• As budget increases: 𝑧DH/

(E:5) is 
chosen as static-cost, instead 
of dynamic-cost before

• Low budget: Static-cost 
measurements provide more 
information with lower price

• With more budget: More  
measurements are chosen

• Dynamic-cost measurements 
have a minimum 10 minutes 
interval for human sampling
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Take-Aways
• Measurement optimization maximizes information content within budget

while easily incorporating practical constraints. 
• It can be done before building the experimental system, therefore 

improving data acquisition efficiency with low costs. 9
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