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Optimization of Long-Term Operation

Thermal stress characteristics

. High_ temperature operation of. solid oxide c_ells (SOCs) .increases_ the_ir « Chemical degradation results in changes in the specific energy consumption and 9 Thermal Stress Profiles after 20,000 hours
efficiency but accelerates physical and chemical degradation resulting In thermal performance of the SOC. g . Athermal stress model calculates stresses
reduced cell I_ife. | | o * Dynamic optimization of Iong-_term operating conditions Is necessary to obtain g8 due to change in the coefficient of thermal

* Non-destructive measurement of time-varying extent of degradation Is efficient operation over the lifetime of the system. g expansion.

: . : w7 ! . i :
practically impossible. 3 e - Different optimal operating scenarios have

- Degradation models are developed for optimal operation and control under Maximize Integral Efficiency over lifetime - 6] different stress distributions.
electrolysis and power modes. - 2 _zHHV(Hz produced;) § | —  Tensile stress in the fuel electrode can

- Effects of physical and chemical degradation are generally studied WL Piotart 25 / result in accelerated failure.

: . : : ! : . t t ’ E . ... : ... .
mdepe.nd.ently In the open literature. This study also investigates their Minimize Voltage Degradation Rate 5| >~ Optlmlzm_g operation to minimize chemical
synergistic effects. 7o = | | | | degradation; can result in increased
min - > 0 ° ? Node (i2) ° physical degradation.
: : e 0
SOC Deg rad ation MOd EI l ng Cap ab l l Ities Maximize Lifetime H, production == Constant CD: Max integral efficiency
For thermal stress calculations: === (Constant CD: Min voltage degradation rate
- Chemical degradation is caused by changes in the triple phase boundary maxz H; produced, R - — Constant V: Max H2 production
* Reference stress free at T,.r = 1473 K . .
(TPB) microstructure due to oxidation, agglomeration and redistribution t ref = Constant V: Max integral efficiency
that in turn affect conductivity, active area, and efficiency. Oberatin Specific Energy Lifetime Voltage Degradation — Constant V- Min voltage degradation rate
« Degradation rates are substantially higher under electrolysis due to high '::node & Objective Function  Consumption H2 Production Rate Creep Induced Failure Probability
oxygen partial pressures in the oxygen electrode. (kWh/kg) (x 10° Kg) (%/ khr) . Extended operation at high thermal g 107
+ Physical degradation is induced by thermal excursion and cycling and Constant Undegraded Cell 35.3 118 None stress results in increased creen strain in 2 1071
causes creep and fatigue damage in cells due to thermal stress evolution. Current  Max integral efficiency 36.6 118 2.6 the SOC. P S o]
+ Thermal stresses evolve because of time-varying differential thermal Density _ Min degradation rate 40.4 118 1.8 . The Weibull distribution is used to % ot
expansion between the three layers. Constant V12X Integral Efficiency 356 88 1.7 estimate the failure probability of a given £ _
_ | | o Interconnect Potential Max lifetime H2 prod. 38.9 100 2.0 layer. T |

Chemical degradation modeling capabilities 4 o o ol 1 H,0 Min final degradation 41.7 40 0.7 The effect of different optimal operating 5 1078

° _DY?ZmIC f|r,;,_t IO”nC|pC|leS gnd emplrcllcal mdod_els 1 T 2 Constant Current Density Operation — Minimize Degradation Rate scenarios on failure probability is shown. g 107
include  five omlnant_ egradation Fuel Electrode ¥ ] | . 2 o]
mechanisms in the three active layers of the | EESSUSR S oe ) = coens A tradeoff exists between physical and SR SR T
SOC. Oxygen Electrode 7~ 7274 1.50 chemical degradation phenomena. Time (x1000 h)

« Models include parabolic growth laws for l 2 %] : :

Air Air = — - Fuelinle z
oxide growth, Ostwald ripening for Ni %o, [ ©eenChannel 0, <—1— g 980 el El.ds- _
agglomeration, and Fick's law for surfacexT_) Interconnect g — Q;‘j,';;“n“jjt,et/ gm Concl udlng Remarks
' ' @ 9407 o . L . . L
diffusion. z ool T  Increased resistance within the cell due to chemical degradation result in higher

Physical degradation modeling capabilities N _.— - operating temperatures.

« Thermal stress models are developed that can capture the effect of time- 0 2 5 7 10 12 15 17 2 0o 2 5 7 1o 1 15 17 20 « Time-varying changes in the internal cell temperatures can result in thermal
varying temperature profile within the cell. ime Ao fime (<1000 hrs) stress buildup.

« Creep evolution can be calculated, and failure probability analyzed. - Constant current density (constant H, production rate) operation results in a high * Dynamic optimization over lifetime can identify operational strategies to minimize

degradation rate. degradation or maintain low specific energy consumption.
Coupling and Solution Methodology . |t is observed that to minimize chemical degradation, it is desired to have low Future Work | | |
inlet temperatures. « Extend degrad_at!on models lo_ot_her leading elect_rod_e and electrolyte mgterlals.
Oxygen electrode degradation mechanisms . Degradation models set up as sub- e Tradeoffs between Speciﬁc energy Consumption and degradation rate can be ° Undertake Op.tlmlza:tlon to minimize LCOH by taklng INt0 account operating Costs,
Lanthanum zirconate scale growth mo?jels within SOC model P captured depending on the pricing of electricity and hydrogen. hydrogen selling price, stack replacement schedule, and stack cost.

LSM-YSZ coarsening
Fuel electrode degradation phenomena
Ni agglomeration and volatilization

. . L Constant Potential Operation — Maximize Integral Efficiency * Investigate optimal operating strategies fc_)r seasonal H, demand.
Full discretization over 20k hours of « Extend thermal stress and creep calculations to sealant layer.

Electrolyte degradation phenomena operation 'Sd Intractable. ot i i . — Hydrogen production rate « Develop algorithms for rigorous multi-scale optimization considering both fast and
Quasi-steady state assumption for 1100 | — Fueloutiet slow time scales over large time horizon.
flowsheet level dynamics. = Oxygen outlet 112

Model discretized according to
degradation dynamics
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