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Figure 2: Schematic 

of SOC model.
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• Hydrogen will play a crucial role in energy transition and decarbonization.

• High-temperature reversible solid oxide cells (rSOCs) are a promising dual-

mode technology to generate hydrogen and electricity.

• Intermittent renewable energy requires flexible mode switching of SOCs as 

the price of electricity fluctuates.

• Dynamic modeling, equipment health, and advanced process control help 

to improve SOC operational performance and thermal management while 

reducing cell degradation during frequent mode-switching operations.

Nonlinear Model Predictive Control (NMPC)

Motivation

Conclusions and Future Work

Classical Control and NMPC Results

• IDAES simulation results show that while both control methods attain similar 

performance in a few areas, NMPC reduces SOC temperature gradients and 

mixed partial derivatives more effectively during mode switching.

• Future work

• Mitigate model-plant mismatch through moving horizon estimation (MHE).

• Maximize mode-switching performance in fluctuating locational marginal 

prices (LMPs) of electricity markets. 

• Manage trade-off between operating performance and cell degradation 

over long-term system operation and mode switching.
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Figure 1: Process flow diagram of SOC system. 

• Cell potential lies between 0.7 V and 1.4 V to prevent unintended electrolysis.

• H2 concentration in feed remains no less than 5 mol% to avoid degradation. 

• O2 concentration in sweep outlet remains below 35 mol% to prevent 

oxidation of process components.

• Fuel electrode temperature is kept below 1023.15 K and inlet-outlet 

temperature difference below 75 K to avoid stack thermal stress.

System Performance Constraints

Controller 
Type

Manipulated Variable (MV) Controlled Variable (CV)

PI Cell potential SOC fuel outlet H2 mole fraction

P Makeup feed rate Hydrogen production rate

P Sweep feed rate SOC stack core temperature

PI (C1I) Steam heater duty Steam heater outlet temperature

PI (C2I) Sweep heater duty Sweep heater outlet temperature

P (C1O) Steam heater outlet temperature setpoint* SOC feed outlet temperature

P (C2O) Sweep heater outlet temperature setpoint* SOC sweep outlet temperature

None
Feed & sweep recycle ratios, makeup H2 & H2O mole fractions, condenser vapor 
outlet temperature, condenser recycle ratio (for NMPC only)

Table 1: Manipulated variables and their pairings in classical control. Artificial variables marked with *.

• NMPC was developed for setpoint transition using 8 non-artificial MVs in Table 1.

• Objective function (eqn. 1) contains weighted sum of squared errors of:

• trajectory tracking of H2 production rate yi (1
st term);

• deviations of MVs (excluding trim heater duties and condenser vapor outlet 

temperature), uij, (2
nd term) and CVs, xik,(3

rd term) from reference values. 

• Rate of change penalty on trim heater duties vi (4
th term) to prevent oscillations.

• To prevent thermal degradation over time, magnitude of positive-electrolyte-

negative (PEN) temperature mixed spatial-temporal partial derivatives 

(curvatures) along cell length (z-direction), Τ𝜕2𝑇 𝜕𝑧𝜕𝑡, is penalized (5th term).

• Both classical control and NMPC reach target H2 production rates by the end 

of the 5-min ramps with NMPC not overshooting (3a).

• NMPC produces different trim heater duty profiles than classical control does 

(3b) but retains near-identical power usage to that of the latter (3a).

• NMPC affords longer SOC temperature settling times (3d, 3f) but smaller 

temperature gradients and curvatures as well as less oscillation (3c, 3e).

(3a)

• SOC dynamic flowsheet model (Fig. 1) 

was developed in open-source, equation-

oriented IDAES modeling framework.

• First-principles non-isothermal planar 

SOC model uses 1D channel sub-

models with 2D electrode, electrolyte, 

and interconnect sub-models. (Fig. 2) 

• Dynamic system behavior is dominated 

by thermal holdup in metal mass of 

SOC, heat exchangers, and trim heaters. 

Dynamic Simulations
• Case Study: Hydrogen-Power Mode Switching

• Maximum H2 production to power generation and back to maximum H2.

• Hydrogen-power ramp performed over 5 min followed by 5 h of settling time.

• Solution Approach

• Classical: PETSc variable-step implicit Euler DAE solver.

• NMPC: Full-discretization NLP with IPOPT solver.
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