IDAES NMPC for Mode-Switching Operation of Reversible Solid Oxide Cell Systems
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Figure 3. Comparison of classical control with NMPC

« |IDAES simulation results show that while both control methods attain similar
performance in a few areas, NMPC reduces SOC temperature gradients and
mixed partial derivatives more effectively during mode switching.

« Classical: PETSc variable-step implicit Euler DAE solver.
 NMPC: Full-discretization NLP with IPOPT solver.

System Performance Constraints
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