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Integrated SBDoE 

framework for batch 

crystallization.

Given experimental data (𝒙𝑖 , 𝒚𝑖), how do we find the best fit 

parameters 𝜃 in our mathematical model?

What are the most informative data to reduce uncertainty (𝜃) 

and derisk technology optimization and scale-up?

Dynamic membrane 

modeling calibration 

using SBDoE for critical 

materials and rare earth 

elements.

Self-driving laboratories select 

the next best experimental 

conditions for maximizing 

material properties information.

Scaling up CO2 

capture technologies 

with sequential design 

of experiments 

framework reduces 

model uncertainty.

Pyomo.DoE supports SBDoE for parameter precision which 

reduces uncertainty and leads to faster and derisked 

decision-making.

Error is normally distributed with a 

multivariate standard deviation Σ𝜖 

max det(M)
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How do we sequentially choose the experimental conditions (𝜑) 

that will maximize information gain? 
Sensitivity Matrix

Heatmaps show the most 

informative parameters of the 

optimal solution from deviations in 

the experimental information 

content.
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SBDoE Optimization Problem
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