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Electrochemical processes in water treatment

q Driven by 
electricity.
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A generalized electrochemical cell. 

q Electrode 
reactions for 
chemical 
processes. 

q Electrical 
fluxes for 
physical 
processes.

Advantages 
o Clean energy.
o Integrated physical and 

chemical processes.
o Competitive performance in 

some cases. 

Main questions 
o Performance under different 

conditions. 
o Cost efficacy. 

WaterTAP modeling

Major technologies and key modeling strategies in WaterTAP

Case study: electrodialysis (ED) modeling and analysis

Comprehensive 
simulation of 
mechanisms 

o Four mass transfer 
mechanisms. 

o Non-ohmic potentials.
o Nernst diffusion 

layers. 
o Frictional pressure.
o Costing electricity, 

materials, and 
maintenances. Salt concentration Electrical potential profile
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Counter-diffusion   

Electro-osmosis  

Electrical flux   
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Mechanisms simulated in the ED cells

An ED system in “feed-
and-bleed” mode    

Simulation and 
optimization 

Optimization-guided designs

Performance prediction Minimized LCOW

Details over the flow path 
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Brine solution, 
NaCl (aq)

Cl2(g) H2(g)
Anode Cathode

Dilute NaOH 
and NaCl

2Cl−(aq) → Cl2(g) + 2e− 2H2O(aq) + 2e− → H2(g) + 2OH−

Modeling core: 0-D or 1-D simulation of mass balances in reactors. 
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P(x) = P

d
dt (∫ C dv) = QCi − QCe + ∫ JS da

QCi − QCe + ∫ JS da = 0

Generic mass transfer continuity: 

Steady state modeling:

JS = ξi
F

0-D 1-D

∫ JS da = JA = ξI
F ∫ JS da = ∫ JS(x)w dx = ∫ ξi(x)w

F
dx

x
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…
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Discretization for 
solving ode. 
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Pollution rises to surface
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H2 + OH-Al3+
Coagulation

flotation

Sludge
Pollutant settles

Stable floc

Al3+ + 3OH− → Al(OH)3

Check me out for 
modeling details J

Find more about WaterTAP:
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