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Osmotic Processes Cost optimization and TEAMotivation

Remarks/Future Work

Compare Transport Models
• Solution Diffusion

• Solution-Friction

• Spiegler-Kedem-Katchalsky

Modeling Approaches

𝐽𝑠 = 𝐵∆𝐶 + 1 − 𝜎 𝐽𝑤𝐶

𝐽𝑤 = 𝐴(∆𝑝 − 𝜎 ∆𝜋)

Hybrid-designs

• TEA and optimization for hybrid 

LSRRO-OARO 

• Compared the optimized hybrid 

system to standalone 

OARO/LSRRO 
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Low-Salt Rejection Reverse Osmosis

Case 1: 35 g/L, 70% recovery, 2 stages Case 3: 125 g/L, 35% recovery, 4 stagesCase 2: 70 g/L, 55% recovery, 3 stages

Atia et al. Desalination. 2023, 551, 116407
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Low-Salt Rejection Reverse Osmosis

Osmotically Assisted Reverse Osmosis

Cascading Osmotically Mediated Reverse Osmosis

Reverse Osmosis
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Precision 
Separations

• Reverse osmosis (RO) is a 

core technology used for 

seawater desalination

• RO has limited salinity range 

for operation (< 70 g/L TDS)

• Emerging osmotic 

technologies enhance RO 

capabilities and potential

+ Mixer

Mechanistic Modeling

Solution-Diffusion Model:

• Concentration polarization

• Predicts rejection of a single 

component

Donnan Steric Pore Model with 

Dielectric Exclusion (DSPM-DE):
• Predicts rejection of multiple 

components

• Diffusion, convection, and 

electromigration terms via extended 

Nernst Planck equation

• Accounts for steric, dielectric, and 

Donnan exclusion

Spatial Modeling

Assumed Performance Model:

• Fixed performance indices

0D Model:

• Well-mixed material

• No spatial discretization

1D Model:

• 1D spatial variation

• Finite difference discretization
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