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DOE/FECM History of Innovation for Decision Support Tools
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Carbon capture challenge
• The traditional pathway from discovery to 

commercialization of energy technologies can be quite 
long, i.e., ~ 2-3 decades

• President [Obama]’s plan requires that barriers to the 
widespread, safe, and cost-effective deployment of CCS be 
overcome within 10 years

• To help realize the President’s objectives, new approaches 
are needed for taking CCS concepts from lab to power 
plant, quickly, and at low cost and risk

• CCSI will accelerate the development of CCS technology, 
from discovery through deployment, with the help of 
science-based simulations 

Bench Research   
~ 1 kWe

Small pilot           
< 1 MWe

Medium pilot      
1 – 5 MWe

Semi-works pilot 
20-35 MWe

First commercial 
plant, 100 MWe

Deployment, >500 
MWe, >300 plants
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How can we accelerate technology 
development for carbon capture and storage?

Key differences in the design process used to create these two machines:  
better  science, more engineers…..and also large-scale simulations
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Develop M&S tools to accelerate the commercialization of CCS



On June 28-29, 2011 CCSI Team visited Boeing's Integrated Technology Development Lab and the Everett manufacturing plant to learn how they are successfully using 
simulation and modeling to accelerate the development of new aircraft, such as the 787.



(2011-2016)

Industry Collaborators

Available Open Source
https://github.com/CCSI-Toolset/

www.acceleratecarboncapture.org

Maximize the learning at each stage of technology development



20152014

Multi-disciplinary, Multi-institutional Collaboration



www.tcmda.com

Technology Centre Mongstad – Summer 2018

Sequential Design of Experiments to 
Maximize Learning from Carbon Capture 

Pilot Plant Testing

Model + Experiments + Statistics
Ensure right data is collected

Maximize value of data collected

Technical Risk Reduction Through 
Simulation-Based Engineering

Maximizing LearningUncertainty Quantification



Increasingly Integrated Energy & Process Systems
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Decision Making for Energy and Process Systems

Decisions

R&D priorities

Technology selection

Process design

Process operation

Approaches

Approximations

Heuristics

Spreadsheets

Simulation

Optimization min𝑓𝑓 𝑥𝑥,𝑢𝑢
ℎ 𝑥𝑥,𝑢𝑢 = 0
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Simulator

Understanding large, complex systems: Don’t Simulate  Solve

Equation-oriented (EO) 
Optimization

model embedded as 
algebraic constraints

Optimization over
degrees of freedom only

Glass-box optimization
~ 1-5 "Simulation Time Equivalents"

Leverage exact derivatives, sparse structure

Derivative-free ("black-box") optimization (DFO)
~ 100-1000 simulations

[Adapted from Biegler, 2017]

13Biegler, L. T., D. C. Miller and C. O. Okoli (2021). Don't Search - Solve! Process Optimization Modeling with IDAES. Simulation and Optimization 
in Process Engineering: The Benefit of Mathematical Methods in Applications of the Chemical Industry. N. Asprion and M. Bortz, Elsevier.



Next-generation multi-scale modeling & optimization framework
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Academic Commercial

Fully Flexible Model Libraries
Open Model Structure Black Box Models
Optimization Simulation
Dynamic Steady-State
Conceptual Design Case StudiesTranscending Boundaries

Built on

• High-level programming language
• Rich set of tools and libraries

• Open-source Python package
• Streamlined optimization modelling
• Development of numerical methods
• Interfaces with optimization solvers

• Reusable and extensible unit models
• Equation-oriented approaches to physical 

property models
• Integrated with model identification and 

machine learning tools
• Advanced algorithms tailored to process 

design and optimization



Integrated Platform
Hierarchical - Steady-State & Dynamic - Model Libraries

Modeling Framework
Steady 
State

Dynamic 
Model

Gurobi CPLEX Xpress
GAMS NEOS Mosek

CBC
BARON

Ipopt
GLPK

Open Source: https://github.com/IDAES/idaes-pse
Lee, et al., J. of Adv. Manufacturing and Processing (2021) 

Enterprise Optimization
Grid & Planning

Materials 
Optimization

Process Operations
Dynamics & Control

Conceptual Design AI/ML
Surrogate Modeling

Uncertainty Quantification
Robust Optimization

PyROS

Plant Design 
Process Optimization

https://github.com/IDAES/idaes-pse


Scale-Bridging to Assess Macro-scale Interactions

Grid ModelingIntegrated Resource-Grid ModelHigh-Fidelity Process Modeling

https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png

Gao, X., B. Knueven, J.D. Siirola, D.C. Miller and A.W. Dowling (2022). "Multiscale simulation of integrated energy system and 
electricity market interactions." Applied Energy 316: 119017, https://doi.org/10.1016/j.apenergy.2022.119017.

Example shows how 
neglecting larger 
interactions results in 
wrong conclusions.
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Changes in the Carbon Management Landscape

2010’s
• Coal
• Baseload, steady state
• 90% Capture target

2022+
• Natural gas
• Net Zero Goals  Higher Capture Rates

– 2035 Power Generation
– 2050 Economy-Wide

• Flexible generation
• Large pilots & demonstration

• Industrial capture
• Carbon dioxide removal 

– Direct air capture
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Advanced Computational to Support CO2 Capture
Maximizing Leaning, Reducing Technical Risk, Integrating Analysis

Quantify Price of Robustness

Uncertainty QuantificationModel Validation

Process Optimization

High Fidelity Process Modeling

Framework for Robust-Optimal Design and Operation

Optimize Experimental Design Refine Model Parameters Maximizing Learning

More Robust Optimal Designs

UQ Guides SDoE to Optimize Data Value, Maximize LearningRigorous Physics-Based Multiscale Stochastic Models

Optimizing Design & Operations for Flexible CO2 Capture Systems
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Objective: accelerate identification, design, and scale-up of innovative CM & REE processes, 
leveraging IDAES and a decade of DOE investment and experience in CM & REE technologies. 
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PrOMMiS will work directly with industry and research partners to accelerate scale-up by de-risking the 
development and deployment of commercial-scale processes and maximizing learning in development.
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Foundational Modeling and Optimization Partnerships Utilizing IDAES
Multi-lab Initiatives to Address Major National and DOE Priorities
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H2 with Capture

Integrated Energy Systems

Water Desalination

Rare Earth Element & 
Critical Mineral Recovery

Produced Water Management

Post-Combustion
Carbon Capture



Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
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