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Estimated U.S. Energy Consumption in 2021: 97.3 Quads
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Source: LLNL March, 2022. Data is based on DOE/EIA MER (2021). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory

and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA

reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The

efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is

estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect
DOE's analysis of manufacturing. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527
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DOE/FECM History of Innovation for Decision Support Tools
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Carbon capture challenge

« The traditional pathway from discovery to
commercialization of energy technologies can be quite
long, i.e., ~ 2-3 decades

 President [Obamal’s plan requires that barriers to the
widespread, safe, and cost-effective deployment of CCS be
overcome within 10 years

 To help realize the President’s objectives, new approaches
are needed for taking CCS concepts from lab to power
plant, quickly, and at low cost and risk

« CCSI will accelerate the development of CCS technology,
from discovery through deployment, with the help of
science-based simulations

Bench Research
~ 1 kWe

Small pilot
<1 MWe

Medium pilot

1-5MWe

Semi-works pilot
20-35 MWe

First commercial
plant, 100 MWe

Deployment, >500
MWe, >300 plants
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How can we accelerate technology
development for carbon capture and storage?

Key differences in the design process used to create these two machines:
better science, more engineers.....and also large-scale simulations
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Develop M&S tools to accelerate the commercialization of CCS

Identify Reduce the time Quantify the technical Stabilize the cost
promising for design & - risk, to enable reaching ‘ during commercial

concepts troubleshooting larger scales, earlier deployment
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On June 28-29, 2011 CCSI Team visited Boeing's Integrated Technology Development Lab and the Everett manufacturing plant to learn how they are successfully using
simulation and modeling to accelerate the development of new aircraft, such as the 787.




..‘ : CCS| (20 11-201 6) Maximize the learning at each stage of technology development
' Carbon Capture Simulation Initiative

Traditional time to deploy new technology in the power industry
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55 Years of Invention
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Multi-disciplinary, Multi-institutional Collaboration
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Technology Centre Mongstad — Summer 2018
s

M2 ces’ T

Carbon Capture Simulation for Industry Impact

Sequential Design of Experiments to
Maximize Learning from Carbon Capture
Pilot Plant Testing
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Increasingly Integrated Energy & Process Systems
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Decision Making for Energy and Process Systems

Decisions Approaches
Process operation @ Approximations
Process design LE% Heuristics @

Spreadsheets
Technology selection all
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Understanding large, complex systems: Don’t Simulate = Solve

Derivative-free ("black-box") optimization (DFQO)
~ 100-1000 simulations Equation-oriented (EO)
Optimization
model embedded as

Optimization over
degrees of freedom only

algebraic constraints

Glass-box optimization
~ 1-5 "Simulation Time Equivalents"

Leverage exact derivatives, sparse structure
[Adapted from Biegler, 2017]

M Biegler, L. T., D. C. Miller and C. O. Okoli (2021). Don't Search - Solve! Process Optimization Modeling with IDAES. Simulation and Optimization 13
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””””””””””””””””””””” in Process Engineering: The Benefit of Mathematical Methods in Applications of the Chemical Industry. N. Asprion and M. Bortz, Elsevier.




Next-generation multi-scale modeling & optimization framework

Fully Flexible Model Libraries

Open Model Structure IDAES

Optimization rsticte for e Do o Simulation
- vanced Energy Systems

Dynamic Steady-State

Conceptual Design Transcending Boundaries Case Studies

Academic Commercial

Built on IDAES
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IDAES Integrated Platform
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Conceptual Design Plant Design

Process Optimization

Process Operations
Dynamics & Control
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Open Source: https://qithub.cgmllDAES/idaes-pse

Lee, et al., J. of Adv. Manufacturing and Processing (2021)
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https://github.com/IDAES/idaes-pse

Scale-Bridging to Assess Macro-scale Interactions

High-Fidelity Process Modeling Integrated Resource-Grid Model Grid Modeling
e Conc. Solar T PV Solar Real-Time Market Loop Day-Ahead Market Loop
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contours: logo NPV ) contours: log;o{ NPV )
Price Taker Log NPV of DA+RT maximims wind 1.0
farmsizeand
Example shows how RSP 2o
. x E maximizes wind
neglecting larger s farm size and
. . Its i £ B selects modest
Interactions results In ; %E“ battery power
. ﬁ 0.4 g 0.4 I‘atil‘lg
wrong conclusions. : 3
%Z5 o 15 200 WinI;EPn-la:n[:dw] 3|0 400 450 SOn %0 100 150 2\‘:};[];;‘:“;;?W9
Example to illustrate differences: results based on the specific grid, parameters, and control strategies that are being used
LU IDAES Gao, X., B. Knueven, J.D. Siirola, D.C. Miller and A.W. Dowling (2022). "Multiscale simulation of integrated energy system and

2. . f e oray Sysiarms electricity market interactions." Applied Energy 316: 119017, https://doi.org/10.1016/j.apenergy.2022.119017.
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Changes in the Carbon Management Landscape

2010’s 2022+
« Coal * Natural gas
« Baseload, steady state * Net Zero Goals - Higher Capture Rates
e 90% Capture target — 2035 Power Generation
— 2050 Economy-Wide
‘ d CC S | » Flexible generation
’\ Srm— « Large pilots & demonstration
%
’i CCSI * |ndustrial capture

« Carbon dioxide removal

|DAES — Direct air capture
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Advanced Computational to Support CO, Capture

Maximizing Leaning, Reducing Technical Risk, Integrating Analysis

Rigorous Physics-Based Multiscale Stochastic Models UQ Guides SDoE to Optimize Data Value, Maximize Learning

High Fidelity Process Modeling Model Validation Uncertainty Quantification Optimize Experimental Design Refine Model Parameters Maximizing Learning
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Objective: accelerate identification, design, and scale-up of innovative CM & REE processes,
leveraging IDAES and a decade of DOE investment and experience in CM & REE technologies.

Accelerate development,
analysis, and scale-up of

CM & REE technologies
from raw sources, waste,
and end-of-life products

Leveraging Existing DOE
Investment and Capabilities Model Development and Cost

Estimation of Novel Processes
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Clritical Materials Institute

AN ENERGY INNOVATION HUB

Digital Twin for process
improvement and operational
excellence

Process Configuration, Design and
Operational Optimization

Engagement

Reducing technical risk during
scale-up development and
maximizing learning from pilot
scale testing

Technical Risk Reduction

External Partnerships & Project

SR

RARE EARTH ELEMENTS AND CRITICAL MINERALS
FROM COAL AND COAL-BASED RESOURCES

<

e e

PrOMMIS will work directly with industry and research partners to accelerate scale-up by de-risking the
development and deployment of commercial-scale processes and maximizing learning in development.



Foundational Modeling and Optimization Partnerships Utilizing IDAES

IDAES
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Multi-lab Initiatives to Address Major National and DOE Priorities
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United States Energy-related Carbon Dioxide Emissions in 2021: 4,863 million metric tons
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Source: LLNL July, 2021. Data is based on DOE/EIA MER (2019). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy,
under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro,
wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity

delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector and
49% for the industrial sector, which was updated in 2017 to reflect DOE's analysis of manufacturing. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527
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