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CCSI? — Modeling, Optimization, and Technical Risk Reduction

Multi-lab modeling initiative to support carbon capture technology development
A 7

‘ 2 NATIONAL /—\] mL
awrence Livermore = i OAK RIDGE
‘ ‘ S ; Pacif
I TL ) Asermon e ‘m' National Laboratory - Los Alamos Northwest iNational Laboratory

LABORATORY tsrae

AT AUSTIN

’ ‘ Carbon Capture Simulation for Industry Impact Carne gi eMellon WestViginiaUniversicy E_'ﬂ yxiveRsirs or ;iL lEnXA S @

. .. . . .
Modeling Optimization Risk Reduction
High Fidelity Process Modeling Model Validation Uncertainty Quantification Process Optimization Robust Design Maximizing Learning
_ ; 0
200 3 ‘Z ; 05 " opc s ®  Feasible sample A Explicitly feasible s 21
___________ Z i N | ©  Reboiler duty cost (M$/yr) 05 —600F ®  Infeasible sample $ Violation
P 2 : = Reboiler duty cost (M$/yr) 6 " 5 <
e g 9 I [ ) O Cooler/Condenser duty cost (M$/yr) € 34
T ® o . \ 4 04 & Pump duty cost (Ms/yr) — Py
380 ® e e . E — E - LLD (mol CO/moI MEA) . loaa —1200 ,".‘.",".F Py~ . § ~
" - — = = . w 4 . -
o O TCM Data: Absorber 20 == H £ ' o 0 “:~ S 3
‘ 2
% 3607 —— Model: Absorber 2\ i 000 =03 s £ |5 1800 : \3" '...‘~ . £ 24
5 ® TCM Data:Stripper 8 Y . 5 ] S|z RIY g ? s (.3
&340 Model: Stripper E | \ Zo2 3|7 2400 Xy '; N 2N &S ©
g oe = . y J H 02g I W ..-‘" e 2
@ - 4 . O w© 4
G os| /o | = —3000 e WAy o s
8 S Y £
. Coo9 \ g ‘—¥—‘:‘ ‘ | o 01 * § < -
o g ° | ; —3600
300 = ozl 00 T T T T
Bottom _ Top e e e 52035 30 % 500 3000 2500 —2000  —1500 1000 0 50 100 180
Normalized length L/G ratio, mol/mol by (K)

- O%CQYLENODEO =
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Past and Present CCSI/CCSI? Industrial Collaborations
ADAYU Solids heat exchanger modeling and bottlenecks

Key characterizers of amino-silicone solvent performance
3 Dynamic CCS modeling and advanced process control (power/steel)
DA\ Sorbent pilot test support via Dok
BIRTI NAS solvent process modeling and pilot support via SDoE *Highlighted by Marty Lail at 1:30 on Oct 11"
j . . - . o *Poster by Josh Morgan
@ SINTEF Solvent VLE and emissions modeling
EPRI |5 EEMPA solvent and process modeling and optimization

Membrane module and process modeling for pilot support
Cryogenic capture process modeling

Membrane module and process modeling (steel)
Piperazine process modeling

Requested to support mixed salt solvent pilot via SDoE
Requested to support sorbent pilot via SDoE

- : : Since 2010 CCSI/CCSI? Supported 16
,.'f@:::::w MEA Basel!ne Campa!qn Drocess model!nq and SDoE Carbon Capturs projects $100MMS in
e G, MEA Baseline Campaign process modeling and SDoE total project value (TRL 3-7)

Past
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CCSI? Summary, Capabilities, Highlights

« Sequential Design of Experiments for lab-, bench-, or pilot-
testing I cooLer, ___60% more accurate predictions

* Improves model while optimizing lab- or pilot-scale experimental data
ﬁ @ ) @)D D @ @

generation — can save years off of pilot test schedule \ @ m
*+ NCCC and TCM MEA pilot models accurate on CO, Capture — D & Gittiub, Inc.(US) | hitps/github.com/CCS b9 [D% C @ L AINGDE
percentage Wlthln 3-6% With 95% confidence L Pull requests Issues Marketplace Explore
(=]

\-#!D

- Novel Solvent and Process Optimization ‘ & CCSlToolset
. CFD tO eIUC|date novel SOIVent/paCklng Interactlon’ ContaCt angle, i; ' ‘ ;:wuecsir:;n Capture Simulation Initiative [(CCSI1) Toolset is a suite of computational models for carbon capture equipment and design
InterfaC|a| area. hitpsfunew.acceleratecarboncapture.org’ cosi-support@acceleratecarhoncapture.o
* Rigorously ensures proper balance of cost and performance. o — | |
Minimize captured cost of 1. PNNL CO,BOL Process (>10% > Hiwpostore= @ | WP @ BTe=n@® HPnes@ @S
Improvement over basellne)’ 2 Advanced SOIVent FIaSh Strlpper O Finned repositaries Customize pinned repositories
Process (optimization performed for multiple solvents) )
= FOQUs = ProcessModels_bundle = CFDModels_bundle
mfrfﬂ FOGUs: Framework for Optimization and A suite of process models implementad in both High ﬂqamy device scale Computational Fluid
° Process I ntens |flcat|0n/Eq u I pment DeS|g n Guantification of Uncertainty and Surogates 2:i;g:::;l:f:”r\gd;l;rea:Idmil‘:'eRmC;:‘lt:dM\jtd:lL Dynamics (ZFDY models
. . . Aspen Plus and aspen Plus Dynamics.
*  Intensified solvent absorber design can improve capture rates by | p e
0 fm @Fython k1 Ya @ takele W1 @ Makefle
>10% %
'l = Oxy-CombustionModels_bundle = APCFramework = iReveallite
* Machine Learning L= idsapmmlipgA rmivenlll| Bl | sy

and a suite of equation-hased models of the other efficient process operation and conirol

* Increased speed of CFD based hydrodynamic simulations by 4000x Cornpenerts o 3 complte cyconbustion poter
for 13-22% accuracy (or 14x with better accuracy) et

@ Makafile @ natiab ®ava Y3
« Computational Toolset Maintenance

bgip/CCSl-Toolset
. Regular software updates and revision management — open source

' \ Carbon Capture Simulation for Industry Impact


https://github.com/CCSI-Toolset

*More Detail by Ryan Hughes at 1:15 on Oct 121"

Toolset Publicly Available

\ ® CCSI Toolset
' \ The Carbon Capture Simulation Initiative (C

github.com/CCSIl-Toolset

350 Toolset is a suite of computational models for carbon capturd

Processes.

https:Awesacceleratecarboncapture.org’ ccsi-support@acceleratecarboncapture.o

2016 R&D 100 Awards

Ll Repositories 30 Feople 26 Teams 6

Finned repositories

= FOQUS

FOGUS: Framework for Optimization and
Cyantification of Uncerainty and Surrogates

@®Fython w1 Y&

= Owxy-CombustionModels_bundle

The Cxy-Combustion Models package consists of
two primary components: & detailed boiler model
and a suite of egquation-hased models of the other
components of a complete oxycombustion power
generati...

@ takefile

Projects 1 Settings

ProcesshModels_bundle

& suite of process models implemeanted in both
#spen Custom Modeler and gPROMS Model

Builder, as well as models implemented within
Aspen Plus and Aspen Plus Dynamics.

@ Makefile 1

= APCFramework

Unified framewark in MATLAEB for application and
testing of advanced control algorithms towards
efficient process operation and contral

@ Matlab

CFDModels_bundle

High fidelity device scale Computational Fluid
Dynamics (CFDY models

@ rakefila

= iReveallLite

Automated reduced order model generation for
improved computational time

®Java Y3

Main website:

https://www.acceleratecarboncapture.org/

Support/Contact Us email:
ccsi-support@acceleratecarboncapture.org

FOQUS User Documentation:
https://foqus.readthedocs.io

YouTube Channel - tutorials:
https://www.youtube.com/channel/lUCBVjFnxrs
WpNIcnDvh0 GzQ/

FOQUS GitHub repo - development:
https://github.com/CCSI-Toolset/FOQUS



https://www.acceleratecarboncapture.org/
mailto:ccsi-support@acceleratecarboncapture.org
https://foqus.readthedocs.io/
https://www.youtube.com/channel/UCBVjFnxrsWpNlcnDvh0_GzQ/
https://www.youtube.com/channel/UCBVjFnxrsWpNlcnDvh0_GzQ/
https://github.com/CCSI-Toolset/FOQUS

CCS |2 FOQU S F ramewo rk *Demonstration by Ryan Hughes at 1:15 on Oct 12t

4% FOQUS -- [not saved yet]
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Session Flowsheet Uncertainty Optimization SDOE Surrogates Settings Help

- Interface connecting commercial and open source modeling platforms (Aspen, gPROMS, Python, Pyomo, Excel). Uses your models.

Flowsheet

- Propagates uncertainty through modeling hierarchy. Data visualization, parameter screening.

Uncertainty

AS|

HDA_flowsheqt_capcost_

- Simulation based optimization of modeling ensemble.

@@

ation

Y

Design_cost
Cost_v5

- Optimization of modeling ensemble incorporating parameter-based uncertainty.

Cost

- Sequential Design of Experiments (SDoE) maximize learning from experimentation. Uniform and non-uniform space filling. Ordering.

Ol®

it X& %Q‘*ESLSQ \ 4 Q'*'%/Dcﬂ: 4
g

*More Detail by Abby Nachtsheim and Alex Dowling at 1:15 on Oct 12t and Poster by Jialu Wang

S
@Frm - Surrogate modeling capabilities to reduce computational burden of simulation-based engineering. Now coupled with optimization.

Surrogates

Carbon Capture Simulation for Industry Impact
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Open Source Toolset Development and Maintenance

Two-Stage

« Code publicly available since 2017

+ Permissive 3-clause BSD license Code Review Process
« All may use, modify or distribute (with attrib.)
« Examination and contributions welcomed Contribution> @

Pass ﬁ’ 6 a
All Changes Tested and Reviewed L — M
« Currently being used by dev team Update > '
« Contributions are tested (manual & auto) Testing Peer
_ Auto & Manual Review
 Peer reviewed by core team members

 Feedback, conversation, changes... Fail

« Change is accepted or rejected

 NDA-Protected IP uses identical process Feedback] ‘
7
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SDoE Executive Summary

First-principles modeling serves as the foundation for pilot campaign designs
UQ can be used to identify data gaps and their effect on key metrics

SDoE leverages UQ to more efficiently inform data collection
— Improves MEA CO, capture rate prediction by ~60%

Improved models support better optimizations
Optimization under more refined uncertainty leads to more robust designs

Modeling insights can be used to guide future R&D decisions more efficiently

Carbon Capture Simulation for Industry Impact



Deterministic Solvent Modeling Framework

Vapor-Liquid Equilibrium Enthalpy Equations

Excess Enthalpy

dlny;
ex — 2 l
H®X = —RT Z ( e )

f;ﬁV = f;ﬁL - @EYEP = ]/EkxiHi (for solutes)

Activity Coefficient i Px
ex .
In(y;) = 1 0(nG™) y; __Vti Heat Capacity
RT On lim y;
TrPrnjii xl_>0 T+AT
H,,'(T + AT) — H,,"(T) = f Cpm'dT
T

Reaction Equilibrium Constant

Heat of Absorption

AG,., = —RTIn(K)

NeinatHrinat — Ninitiat Hinitiat — Nco,Heo,

AHgps =
Nco,

Y
- ccsr’

Carbon Capture Simulation for Industry Impact



Deterministic Solvent Modeling Framework

C NATIONAL CARBON - e —Q ﬁ' EE%}-_:_R%LOGY
CAPTURE CENTER ‘ ‘ %4 MONGSTAD

« Validated for National Carbon Capture Center (NCCC) (MEA solvent)
« Validated for Technology Centre Mongstad (TCM) (MEA solvent)

\ 2
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Solvent Model Validation Hierarchy

Rationale Solvent Model Validation Hierarchy Workflow
— Fundamental interactions between CO, solvent and absorber s [rrmedeomens] 1 [Geometmies from J&— i
packing are poorly propagated between material and process length > ER i other subtasks? i
scales. Subtask 2-inch section | _| Validation data : Candidate : i-: _c;n;id;t; 1 _:
— Absorber packing sizing and performance predictions are largely 3.2 il _craiss L evaluations || + MEaliaions |
empirically based, and often use low fidelity engineering safety : s ! |
factors to account for unknown commercial scale uncertainties. Proce reﬁ"eme"t" an Process ! :
. |
Approach 31 P reteaton. || simuletions | simalations | s P
— Develop fundamental models of governing phenomena at each 1) 5 3 R e '
length scale . vy .
— Couple multi-scale and multi-physics models, reduce model 43 e 1 ool paeeate | fp{ Pooe e Eeomerny
complexity while retaining sufficient accuracy for meaningful
performance predictions g | soE
. definition

— Validate models by generating prototype packing and testing carbon
capture performance across a range of conditions, including arbitrary
heat management throughout the column length.

Outcome
— A cohesive modeling framework that can propagate behavior
induced by solvent, packing geometry, and packing material choices
from the droplet scale through the process scale.

— Fundamental understanding of how to optimize absorber ‘
designloperation for arbitrary solvents and capture targets.

Solvent Contact Angle 8” column 12” column 3D printed intercooled packing

' \ Carbon Capture Simulation for Industry Impact
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Novel Solvent-Specific Uncertainty Quantification

Activity Coefficients

Viscosity

HHU! S

Inpgors = Apors + —7—+ Cpors - InT

Ap20 " MWh2o
Ap20 " MWyzo + MWpg,

Wh20 =

Hpors—H20 = MpoLs - (1 = Wy20) + ly20 *Wh20 + Dainary

= . o®co2'Eco>
HBoLs-c02-H20 = HBoLs-H20 * € €02 ~C02

*Wy20 " (1 = wy20)

Kinetics

In v = E} XJG} iTji GUX) . (T' o Zm Xme,ij,j)
" Xk XiG ” Yk G jXe " 2k XiGrj
B:
lnHm = /11'“ +%
B; ;
R
i,j i,] T
B.
vap _ *
mE = At T
G‘! j = e(_“:;‘ru)
Mass Transfer

a \0-5
kg = DeCc (dH)

ccsl’
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2C0, + 2BOL & {BOL — CD* } + {BOL — CD~}

E /1 1
ry = kyexp —E(?-W) aco,apor | 1 —

CO, + BOL + H,0 < {BOLH*}+ {HCO3}

E, 11 1
(T TTes

r, =k, exp (—?

AgoL-cp*ABoL-CcD™

(aco,apor)*Ky

)

ApoLH*AHCO;
Aco,qBoL%,0 |1 —

K>

)
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Novel Solvent-Specific Uncertainty Quantification

Process Simulation

r ‘:.i&‘n‘-’.-_h :' 1
—E=< — &<
s
Jp— § 0 » LTEPTLR
> {casn} »
L {mcscuy } J #

Other Key Variables

w & CCS| 13



Bayesian Inference

« Bayesian Inference provides a framework for updating beliefs of model parameters characterized by
epistemic uncertainty in light of collection of new data

Typical likelihood function (represents discrepancy between

VIA (9 |Z) (0.4 P (6) b S L (Z | 9) model predictions and data values of the output:

Posterior Prior Likelihood B - |F*(x;0) —Z (xi)]2
L(Z|0) = exp| —0.5 Mo .2
- l

Representation of Prior and Posterior
Distributions (reduction in uncertainty
through data collection):

Probability Density

T T T T T T
00 02 04 06 08 10

Parameter Value

-
' : c(b:cg:s$ flla ustry Impact h



Sequential Design of Experiments Leverages Real Time

Data Generation for Optimal Batch Generation

Model
selects runs

/~ N\

criteripn _ TH

Outputs: Data

N

Original model of Tests
assumptions M '

Real data updates

del ti
model assumptions FOQUS

w & CCS| 15



NCCC Model Improvement with SDoE Implementation

Three Beds with Intercooling Cases

60% of runs 2014 Campaign (Before SDoE)
w [ ] clusteredhere « Conventional test plan caused “clustering”
» Not ideal for complete understanding
« Used data to refine model

90F

a80r . B 2014 Campaign
B 2017 Campaign (1st Round)

70l B 2017 Campaign (2nd Round)

B0

Wait 3 years....

Cﬂz Capture Percentage (Model)

50F

50 60 70 80 90 100
COE Capture Percentage (Data)
2017 Campaign (Using SDoE)
* Much more distributed output
* Much more complete understanding
* In manner of weeks, further reduced
uncertainty in capture rate by 60%

Carbon Capture Simulation for Industry Impact



TCM Model Improvement with SDoE Implementation

Update in Parameter Distributions for Absorber Reduction in CO, Capture Percentage
Packing Prediction Accuracy
° Mass transfer and interfacial area parameters € ~ | .
£ < are packing-dependent, and therefore are 2 T4 .. . . v
3 . assigned uniform prior distributions over wide g N R A *
= /\\/\/‘ ranges, indicating assumption of relatively A R Prior Cl Width:
8 - large uncertainty before collection of process £ o- ...“ - o (10.5£1.5)%
— A - T T Ty /— = - data. 8 -—-—'——.--—"—-—-—--;}:‘:;-"";..-."-..-.—..-—-—
| 4}" E?J @ — . ee o
C = — ‘ : Bayesian inference, through process data o
0.4 06 0.8 1.0 1.2 1.4 . . ] o w
Interfacial Area Coefficient COIIeCted USIﬂg SDOE’ reSUItS in reflned % POSterior CI Wldth
estimates of parameters, and thus reduction Z - (4.4 +0.4)%
= in uncertainty in process model and risk | | | |
o | associated with scale-up 0 50 100 150
z . Cancicite SCURo. Average reduction in
8 uncertainty: 58.0 £ 4.7%
E o | Candidate set includes variation in:
£ .
o = _,\_,\ = = Prior ) - Solvent Circulation Rate
S L W POSter!OF 1 - Flue Gas flowrate and CO, concentration
02 03 04 05 06 07 08 Posterior 2 - Reboiler steam flowrate

CL Value for Mass Transfer Model

’ \ Carbon Capture Simulation for Industry Impact



High Capture Rates with MEA Solvent - NGCC| “wore betalin Poster by Ben Omel

LCOE Breakown
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Capture Capture Capture Capture Capture Capture Capture CO, Capture Percentage

(LCOE —90% LCOE) 16
90% LCOE 14

Increase =

W

=

=}

Increase in LCOE (%)
(=] = [ w = wn [=1] =] [+ 4] (=]
[
o
Increase in LCOE due to Capture (%)

M Capital LCOE m Fixed LCOE Variable LCOE Fuel LCOE m®mT&S Final CO, Concentration in Flue Gas (ppm)

4000 3500 3000 2500 2000 1500 1000 500 0
98

« LCOE increases linearly from 90->98%, relatively
constant cost of avoided CO.,.

96

+ Incremental cost of avoided CO, significantly %9“ Sgstons !
increases in 98->99.8% capture range. E= saszteme. | 4
- Practical considerations (e.g., need for aux boiler, Qo oms 1
flexible operation) will increase LCOE further at high 8 . &
capture percentages 8
86 o 0 o o o8 ! oo

CO, Capture Percent

Y
- ccsr’
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[1 1 PyROS: a Pyomo Robust Optimization Solver
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*More Detail in Poster by Jason Sherman
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Designs optimized
deterministically can easily
become infeasible with

moderate uncertainty

Carbon Capture Simulation for Industry Impact

Robust optimized designs can
ensure safety and performance

constraints are met amidst

anticipated uncertainty

Price of robustness can be
quantified, minimized

=p ks

Box Budget Cardlnallty -constrained Factor Model

”@@

General Polyhedral Axis-Aligned Ellipsoidal General Ellipsoidal

r
42’

N N
Discrete Scenarios Intersection of Sets

92

0
Custom User-Specified

Evolution of costs for
increasingly robust designs
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| WINNER

Capture Modeling and Analysis Capabilities

Tools and process models to predict, optimize, and minimize risk in the scale-up of technologies

ccsl’

Carbon Capture Simulation for Industry Impact
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*Posters by: Morgan, Panagakos,
Xu, Summits, Tsouris

Hughes, Hedrick

*Posters by: Morgan,

*Demo by: Hughes, Hedrick

High-Fidelity, Multi-Scale

Modeling

Institute for the Design of
Advanced Energy Systems

Foundational Capabilities

« High-Fidelity CCS Modeling (sorbents, solvents, membranes)

« Design of Experiments

« Steady-State and Dynamic Process Optimization
« Electricity Grid Modeling / Expansion Planning
*  Multi-Scale Modeling and Optimization (Materials/Process/Grid)

« Uncertainty Quantification

* Robust Optimization (i.e., Design Under Uncertainty)

* Machine Learning/Al

- ® CCSP

' \ Carbon Capture Simulation for Industry Impact

Process-level TEA
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Robust Optimization
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*Poster by: Sherman

UQ and Parameter
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*Posters by: Nachtsheim, Wang
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For more information
https://www.acceleratecarboncapture.orqg/
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2023 Joint CCSI2/IDAES Technical Team Meeting, Lawrence
Berkeley National Lab
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Uncertainty Quantification Bayesian Inference Example: VLE Models
VLE Data/Model Comparison at 40°C

Using best initial guess
of parameter set

Deterministic sub-model Refined parameter set

102 10
10°
= 100+ _ §
£ g ‘ $
g S 10t | g
3 -2 =t = |
o 10 -] o
1% o (]
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Model Based Insight into Operational Non-ldealities
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Fundamental Model Insight into Data Aberrations
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Carbon Capture Simulation for Industry Impact
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