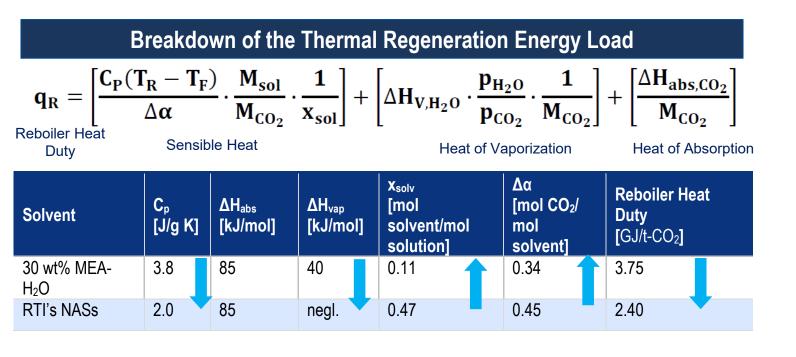
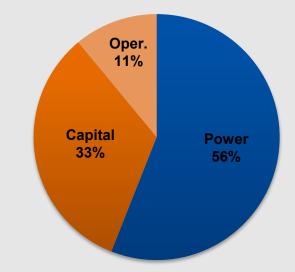



#### Accelerating Carbon Capture Technology Development in Partnership with CCSI<sup>2</sup>


Marty Lail RTI International

#### NAS CO<sub>2</sub> Capture Technology Development History




From lab to large scale demonstration through series of projects

New coal-fired power plants with  $CO_2$  capture at a cost of electricity 30% lower than the baseline cost of electricity from a supercritical PC plant with  $CO_2$  capture, or approximately \$30 per tonne of  $CO_2$  captured by 2030.



#### Path to Reducing ICOE and Cost of CO<sub>2</sub> Avoided

- Primarily focused on reducing energy consumption reboiler duty
- Reduce capital expenditure
  - Simplify process arrangement
  - Materials of construction
- Limit operating cost increase



<sup>&</sup>lt;sup>1</sup> Rochelle, G. T. Amine Scrubbing for CO<sub>2</sub> Capture. Science **2009**, 325, 1652-1654.

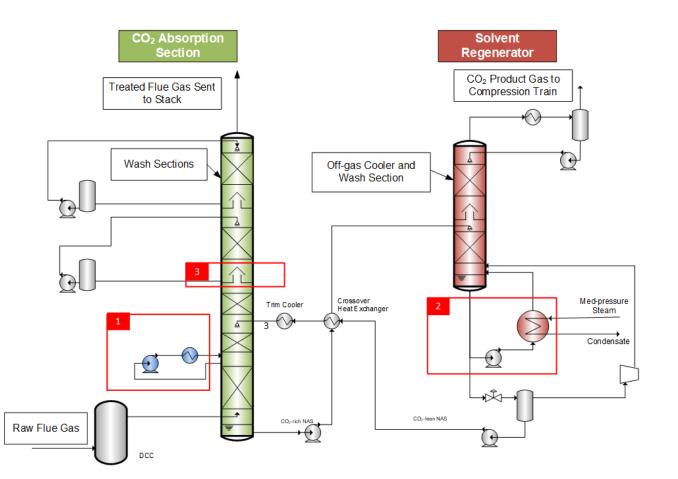
Heat of vaporization of water becomes a negligible term to the heat duty

#### Project Summary : DE-FE0031590



**Description:** Testing and evaluation of transformational non-aqueous solvent (NAS)-based CO<sub>2</sub> capture technology at engineering scale at TCM **Key Metrics** 

- Solvent performance including capture rate, energy requirements, solvent losses
- Solvent degradation, corrosion, emissions
- Technoeconomic and EHS evaluation


#### Specific Challenges

- Resolve remaining technical and process risks
- Operate TCM plant within emission requirements
- Minimize rise in absorber temperature
- Maximize NAS performance with existing hardware limitations
- **Timeframe:** 8/8/18 to 06/30/23
- Total Funding: \$17,384,512





### TCM Amine Plant and NAS Modifications





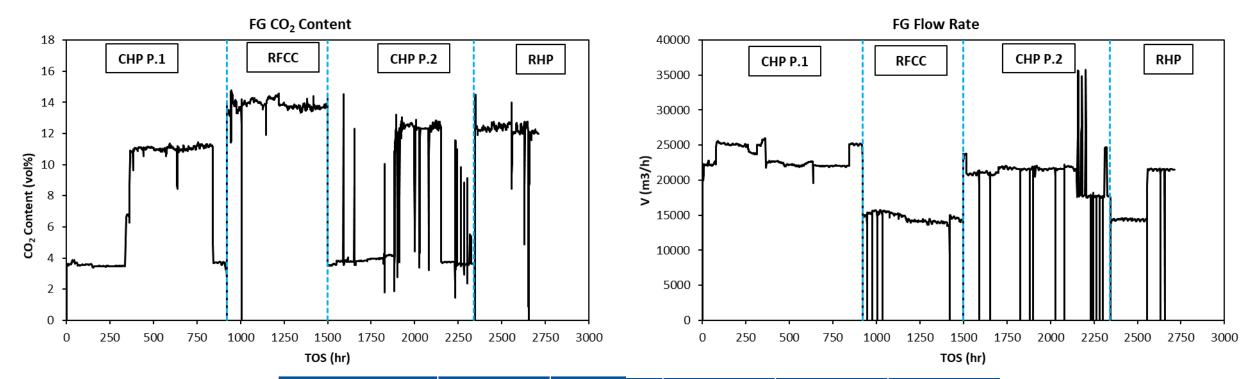


#### ТСМ

- Amine plant modifications
- Leadership in detailed engineering, fabrication, and construction
- Process modeling expertise
- Excellence in operations

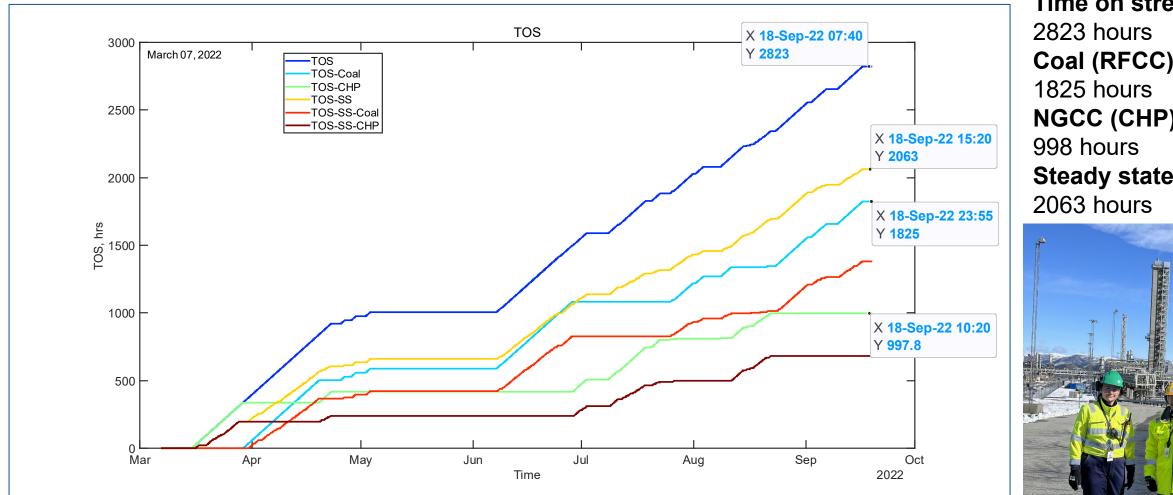
#### **Absorber Modifications**

- One interstage cooler
- Equipment within budget
- Control temperature bulge at top to decrease emissions


#### **Regenerator Mods**

- Higher capacity pump for reboiler
- Force recirculation due to high boiling points of solvent components
- Equipment within budget

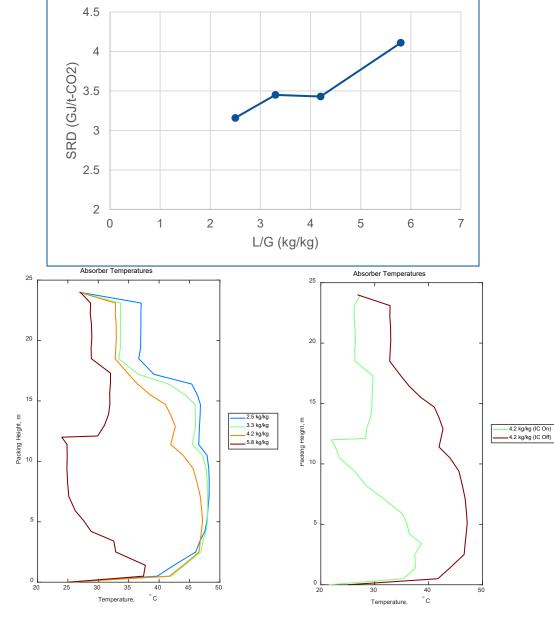
- GEN1NAS modeling
- Thermodynamic data review
- TCM MEA model comparison
- Synergistic with TCM Advisory Services
- SDoE matrices for testing

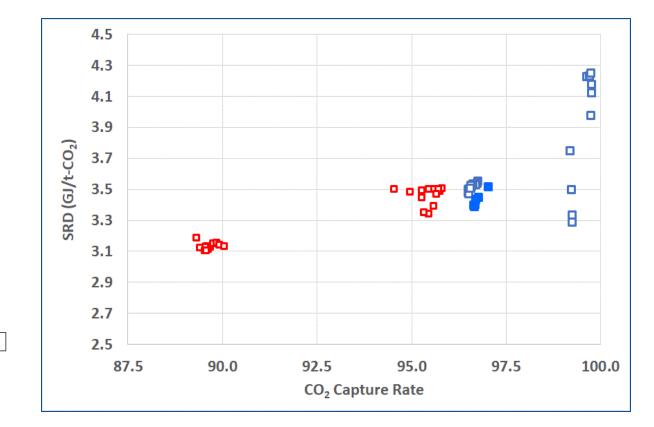

5

## Test Campaign Segments and Flue Gas Characteristics



| Flue Gas                         | CO <sub>2</sub> (vol<br>%) | O <sub>2</sub> (vol%) | NO <sub>2</sub> (ppm) | NO (ppm) | SO <sub>2</sub> (ppm) |
|----------------------------------|----------------------------|-----------------------|-----------------------|----------|-----------------------|
| СНР                              | 3.9                        | 12.9                  | 3.2                   | 23.9     | 1.0                   |
| RFCC                             | 14.7                       | 2.4                   | 1.2                   | 66.5     | 0.0                   |
| CHP w/ Recycle<br>(RFCC Mimic)   | 12.6                       | 6.1                   | 3.0                   | 45.4     | 0.8                   |
| RHP (aka MHP)                    | 13.7                       | 4.6                   | 4.6                   | 50.9     | 0.4                   |
| RHP w/ Recycle<br>(Cement Mimic) | 18.0                       | 4.6                   | 5.0                   | 3.4      | 0.0                   |


### Time on Stream Highlights




Time on stream: Coal (RFCC): NGCC (CHP): **Steady state:** 



## NGCC Performance: L/G Optimization





8

Intercooler impact on bulge

### NGCC SDoE Parametric Testing Results



#### **Test Conditions**

| Run | L/G Ratio (kg/kg) | CO₂ Capture<br>Rate (%) | Regen Pressure<br>(barg) |
|-----|-------------------|-------------------------|--------------------------|
| 1   | 4.5               | 95                      | 1.0                      |
| 2   | 4.0               | 95                      | 1.0                      |
| 3   | 3.0               | 85                      | 1.0                      |
| 4   | 3.5               | 90                      | 1.0                      |
| 5   | 3.5               | 85                      | 2.1                      |
| 6   | 4.0               | 90                      | 2.1                      |
| 7   | 3.0               | 95                      | 2.1                      |
| 8   | 2.5               | 90                      | 2.1                      |
| 9   | 3.5               | 95                      | 3.2                      |
| 10  | 3.0               | 90                      | 3.2                      |
| 11  | 2.5               | 85                      | 3.2                      |
| 12  | 4.5               | 85                      | 3.2                      |

| Run            | Regenerat<br>or<br>Pressure<br>(barg) | Capture<br>Rate | L/G<br>(kg/kg) | Reboiler<br>Temp<br>(Celsius) | Flue gas<br>flow<br>(Sm³/hr) | Observed<br>T_approa<br>ch<br>(Celsius) | Observed<br>SRD<br>(GJ/t-CO <sub>2</sub> ) | SRD (w/<br>5C T<br>approach)<br>(GJ/t-CO <sub>2</sub> ) |
|----------------|---------------------------------------|-----------------|----------------|-------------------------------|------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------------|
| NGCC<br>sDOE01 | 1.0                                   | 95.1            | 4.8            | 97.3                          | 26861                        | 15.4                                    | 5.85                                       | 3.60                                                    |
| NGCC<br>sDOE02 | 1.0                                   | 95.4            | 4.2            | 95.7                          | 26907                        | 14.8                                    | 5.33                                       | 3.43                                                    |
| NGCC<br>sDOE03 | 1.0                                   | 85.0            | 3.1            | 89.2                          | 26932                        | 14.4                                    | 4.63                                       | 3.13                                                    |
| NGCC<br>sDOE04 | 1.0                                   | 90.3            | 3.7            | 90.5                          | 26935                        | 14.3                                    | 4.95                                       | 3.30                                                    |
| NGCC<br>sDOE05 | 2.1                                   | 84.9            | 3.7            | 95.0                          | 26927                        | 16.1                                    | 5.32                                       | 3.32                                                    |
| NGCC<br>sDOE06 | 2.1                                   | 90.3            | 4.2            | 96.9                          | 26929                        | 16.7                                    | 5.67                                       | 3.47                                                    |
| NGCC<br>sDOE07 | 2.1                                   | 95.1            | 3.2            | 102.4                         | 26928                        | 15.6                                    | 4.65                                       | 3.14                                                    |
| NGCC<br>sDOE08 | 2.1                                   | 89.8            | 2.6            | 100.7                         | 26930                        | 15.7                                    | 4.43                                       | 3.10                                                    |
| NGCC<br>sDOE09 | 3.2                                   | 95.5            | 3.7            | 107.5                         | 26976                        | 16.9                                    | 4.85                                       | 3.11                                                    |

104.5

104.7

99.6

NGCC

sDOE10 NGCC

sDOE11 NGCC

sDOE12

3.2

3.2

3.2

90.5

85.3

85.3

3.1

2.6

4.7

| Impact       |        |  |  |  |
|--------------|--------|--|--|--|
| Variable     | Weight |  |  |  |
| L/G          | 0.287  |  |  |  |
| Capture rate | -0.034 |  |  |  |
| Pressure     | -0.025 |  |  |  |

26974

26977

26968

4.67

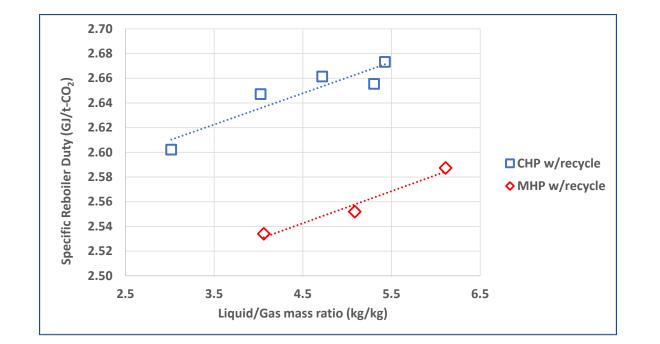
4.38

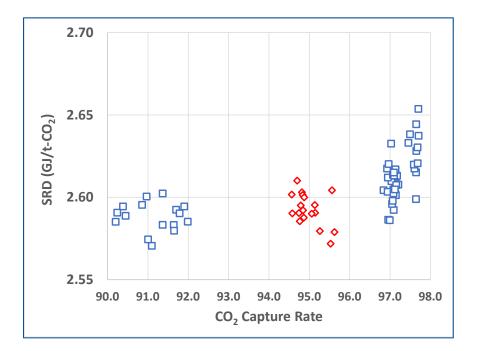
6.22

16.8

16.7

18.0


3.08


3.01

3.69

#### Results

## Coal Performance: L/G Optimization

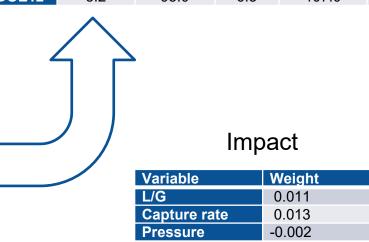




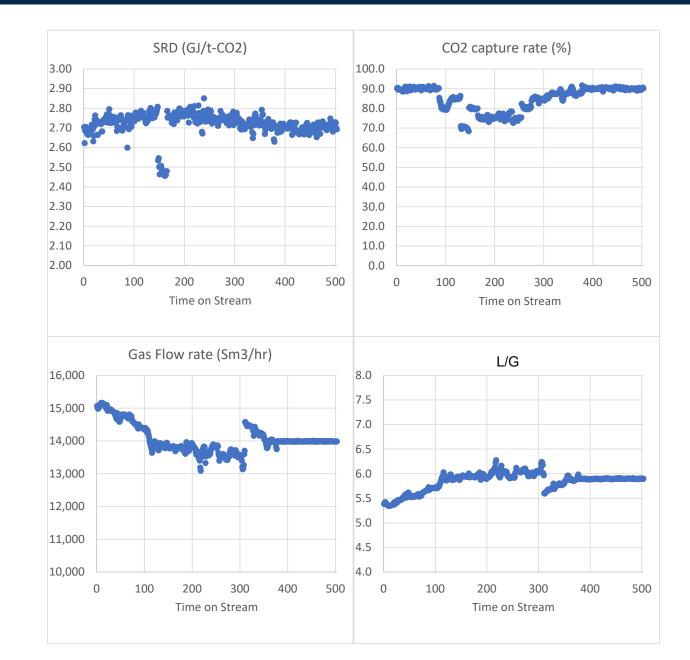
| Gas | L/G<br>(kg/k<br>g) | L/G<br>(kg/S<br>m <sup>3</sup> ) | Flue Gas<br>flowrate<br>(Sm³/hr.) | CO <sub>2</sub><br>capture<br>rate (%) | Regen<br>Pressure<br>(bar,g) | Reboiler<br>Temp<br>(Celsius) | SRD<br>GJ/t-CO <sub>2</sub> |
|-----|--------------------|----------------------------------|-----------------------------------|----------------------------------------|------------------------------|-------------------------------|-----------------------------|
| CHP | 5.4                | 7.0                              | 28,420                            | 89.7                                   | 0.96                         | 94.3                          | 2.67                        |
| CHP | 5.3                | 6.8                              | 28,994                            | 90.0                                   | 0.96                         | 94.8                          | 2.66                        |
| CHP | 4.7                | 6.1                              | 28,443                            | 89.9                                   | 0.96                         | 97.2                          | 2.66                        |
| CHP | 4.0                | 5.2                              | 28,205                            | 90.5                                   | 0.95                         | 100.5                         | 2.65                        |
| CHP | 3.0                | 3.9                              | 28,103                            | 90.0                                   | 0.95                         | 105.4                         | 2.60                        |
| MHP | 6.1                | 7.7                              | 27,847                            | 91.0                                   | 3.17                         | 106.3                         | 2.59                        |
| MHP | 5.1                | 6.5                              | 27,863                            | 90.4                                   | 3.17                         | 110.0                         | 2.55                        |
| MHP | 4.1                | 5.1                              | 27,854                            | 89.6                                   | 3.16                         | 115.1                         | 2.53                        |

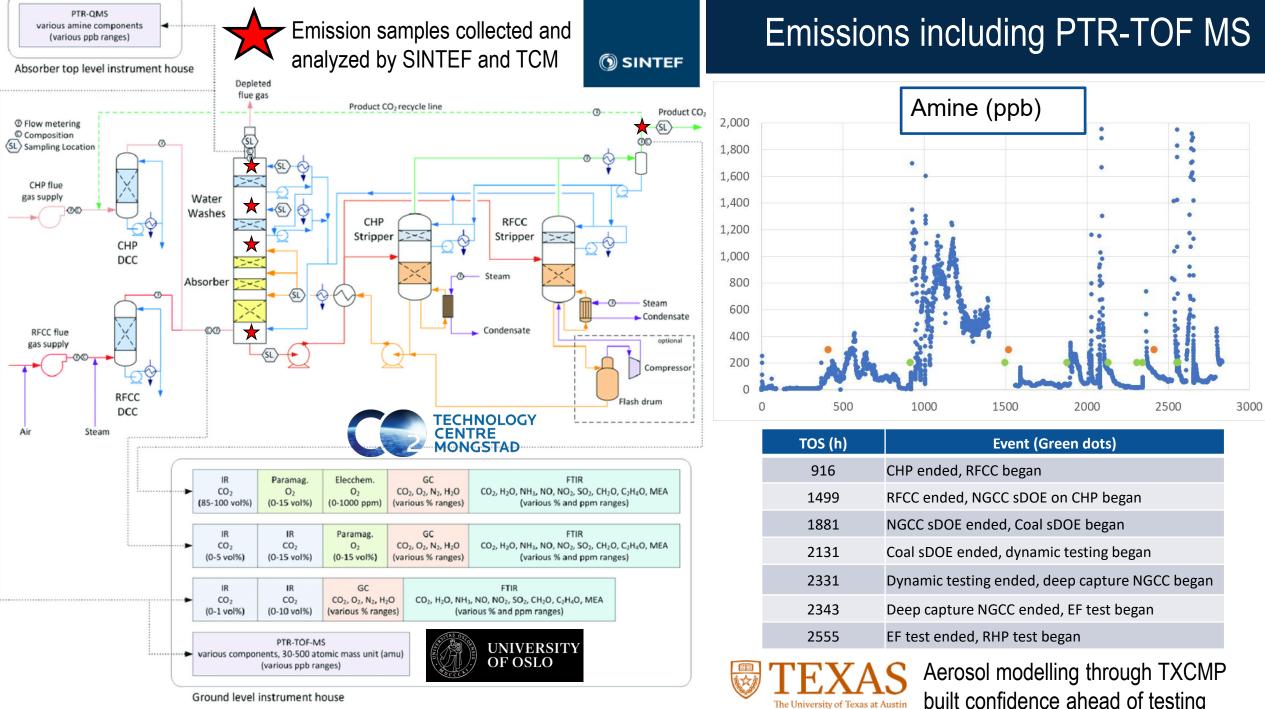
| Run             | Stripper<br>Pressure<br>(barg) | Capture<br>Rate | L/G<br>(kg/kg) | Reboiler<br>Temp<br>(Celsius) | Flue gas<br>flow<br>(Sm³/hr) | SRD (w/ 5C<br>Tapproach)<br>GJ/t-CO2 |
|-----------------|--------------------------------|-----------------|----------------|-------------------------------|------------------------------|--------------------------------------|
| RHP-1           | 3.2                            | 91.0            | 6.11           | 106.3                         | 21,982                       | 2.59                                 |
| Coal<br>sDOE12a | 3.2                            | 95.0            | 6.52           | 107.0                         | 21,982                       | 2.59                                 |
| CHC-2           | 3.2                            | 97.1            | 6.11           | 112.2                         | 21,982                       | 2.61                                 |
| CHC-3           | 3.2                            | 97.6            | 6.11           | 113.9                         | 21,982                       | 2.63                                 |

### Coal SDoE Parametric Testing Results




| Results |
|---------|
|---------|

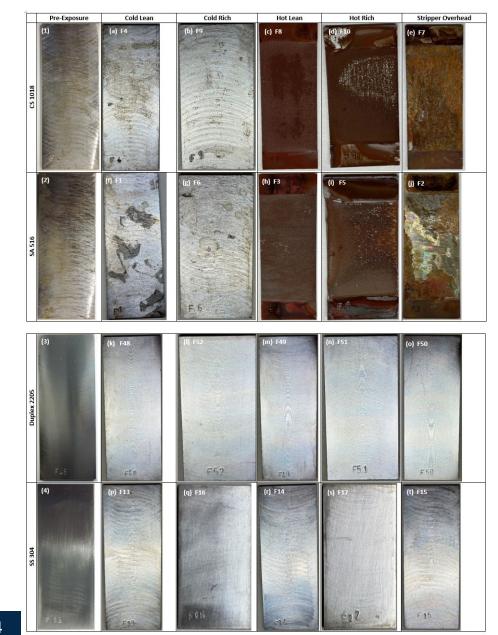

|        | Stripper<br>Pressure | Capture<br>Rate | L/G<br>(kg/kg) | Reboiler<br>Temp | Flue gas<br>flow | SRD (w/ 5C<br>Tapproach) |
|--------|----------------------|-----------------|----------------|------------------|------------------|--------------------------|
| Run    | (barg)               | Rate            | (              | (Celsius)        | (Sm³/hr.)        | GJ/t-CO <sub>2</sub>     |
| sDOE01 | 2.6                  | 90.7            | 4.0            | 113.6            | 21,982           | 2.57                     |
| sDOE02 | 2.6                  | 92.0            | 3.5            | 119.8            | 21,983           | 2.55                     |
| sDOE03 | 2.6                  | 90.1            | 4.5            | 110.3            | 21,978           | 2.59                     |
| sDOE04 | 2.6                  | 95.0            | 5.5            | 108.3            | 21,982           | 2.59                     |
| sDOE05 | 2.1                  | 94.6            | 4.0            | 113.4            | 21,982           | 2.59                     |
| sDOE06 | 2.1                  | 90.4            | 6.5            | 98.9             | 21,982           | 2.58                     |
| sDOE07 | 2.1                  | 90.5            | 3.5            | 114.6            | 21,981           | 2.53                     |
| sDOE08 | 2.1                  | 95.2            | 4.5            | 110.3            | 21,982           | 2.60                     |
| sDOE09 | 3.2                  | 95.3            | 4.0            | 120.4            | 21,981           | 2.58                     |
| sDOE10 | 3.2                  | 90.7            | 5.5            | 107.9            | 21,982           | 2.57                     |
| sDOE11 | 3.2                  | 90.9            | 3.5            | 121.0            | 21,981           | 2.55                     |
| sDOE12 | 3.2                  | 95.0            | 6.5            | 107.0            | 21,982           | 2.59                     |


#### **Test Conditions**

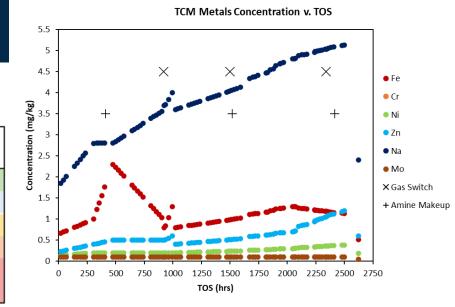
|     |                   | CO <sub>2</sub> Capture Rate | Regen Pressure |
|-----|-------------------|------------------------------|----------------|
| Run | L/G Ratio (kg/kg) | (%)                          | (bar,g)        |
| 1   | 4.5               | 95                           | 1.0            |
| 2   | 4.0               | 95                           | 1.0            |
| 3   | 3.0               | 85                           | 1.0            |
| 4   | 3.5               | 90                           | 1.0            |
| 5   | 3.5               | 85                           | 2.1            |
| 6   | 4.0               | 90                           | 2.1            |
| 7   | 3.0               | 95                           | 2.1            |
| 8   | 2.5               | 90                           | 2.1            |
| 9   | 3.5               | 95                           | 3.2            |
| 10  | 3.0               | 90                           | 3.2            |
| 11  | 2.5               | 85                           | 3.2            |
| 12  | 4.5               | 85                           | 3.2            |



## Coal Long Term Testing







The University of Texas at Austin

Ground level instrument house

## **Corrosion Coupon Testing Results**



| Rating       | Corrosion Rate<br>(µm/yr) |
|--------------|---------------------------|
| Outstanding  | <25                       |
| Excellent    | 25-100                    |
| Good         | 100-500                   |
| Fair         | 500-1000                  |
| Poor         | 1000-5000                 |
| Unacceptable | >5000                     |



|           |                     | Cold Lean (8"<br>Line) | Cold Rich (6"<br>Line) | Hot Lean<br>(8" Line) | Hot Rich<br>(6" Line) | Stripper<br>Overhead<br>(12" Line) |
|-----------|---------------------|------------------------|------------------------|-----------------------|-----------------------|------------------------------------|
|           | CS 1010             | -0.03 ± 0.06           | -0.07 ± 0.08           | 383.02 ±<br>46.83     | Lost                  | -0.51 ± 0.07                       |
| Carbon    | CS 1018             | -0.01 ± 0.14           | 0.01 ± 0.21            | 376.00 ±<br>10.84     | 956.22 ±<br>33.07     | -0.27 ± 0.14                       |
| Steels    | SA 516              | 0.18 ± 0.14            | 0.06 ± 0.21            | 343.21 ± 9.90         | 1167.12 ±<br>40.36    | -0.37 ± 0.14                       |
|           | SA 516 Bent         | 0.12 ± 0.07            | -0.08 ± 0.08           | 414.97 ±<br>64.57     | Lost                  | -0.09 ± 0.04                       |
|           | Duplex 2205         | -0.18 ± 0.14           | -0.21 ± 0.21           | -0.12 ± 0.14          | -0.10 ± 0.21          | -0.08 ± 0.14                       |
| Stainless | Duplex 2205<br>Bent | -0.07 ± 0.06           | -0.07 ± 0.08           | -0.03 ± 0.06          | -0.06 ± 0.08          | 0.00 ± 0.04                        |
| Steels    | SS 304              | -0.02 ± 0.14           | -0.01 ± 0.20           | 0.00 ± 0.14           | 0.03 ± 0.20           | 0.00 ± 0.14                        |
|           | SS 304 Bent         | -0.04 ± 0.06           | -0.03 ± 0.08           | -0.02 ± 0.06          | -0.01 ± 0.08          | -0.02 ± 0.04                       |
|           | SS 316              | -0.03 ± 0.14           | -0.01 ± 0.20           | 0.00 ± 0.14           | 0.02 ± 0.20           | 0.00 ± 0.14                        |
| Resin     | Ultem Resin         | -33.24 ± 5.73          | 20.85 ± 4.30           | Lost                  | Lost                  | 22.37 ± 3.89                       |

### Technoeconomic Analyses, 2023



#### SC PC 97% Capture

#### NGCC F-class 95% Capture

#### NGCC H-class 99% Capture

| Plant                                           | B12B.97-RTI NAS | Plant                                           | B31B.95-RTI NAS | Plant                                           | B32B.99-RTI NAS |
|-------------------------------------------------|-----------------|-------------------------------------------------|-----------------|-------------------------------------------------|-----------------|
| Gross Size                                      | 763 MWe         | Gross Size                                      | 689 MWe         | Gross Size                                      | 939 MWe         |
| Net Size                                        | 653 MWe         | Net Size                                        | 641 MWe         | Net Size                                        | 866 MWe         |
| Capacity Factor (CF)                            | 85%             | Capacity Factor (CF)                            | 85%             | Capacity Factor (CF)                            | 85%             |
| Total As-Spent Cost/Total Overnight Cost Ratio  | 1.154           | Total As-Spent Cost/Total Overnight Cost Ratio  | 1.093           | Total As-Spent Cost/Total Overnight Cost Ratio  | 1.093           |
| Fixed Charge Rate (FCR)                         | 0.0707          | Fixed Charge Rate (FCR)                         | 0.0707          | Fixed Charge Rate (FCR)                         | 0.0707          |
| Total Overnight Cost (TOC), \$MM                | \$2,579         | Total Overnight Cost (TOC), \$MM                | \$1,246         | Total Overnight Cost (TOC), \$MM                | \$1,837         |
| Total As-Spent Cost (TASC), \$MM                | \$2,977         | Total As-Spent Cost (TASC), \$MM                | \$1,362         | Total As-Spent Cost (TASC), \$MM                | \$2,008         |
| Fixed Operating Cost, \$MM                      | \$67.8          | Fixed Operating Cost, \$MM                      | \$31.5          | Fixed Operating Cost, \$MM                      | \$44.9          |
| Variable Operating Cost @ 100% CF, \$MM         | \$73.2          | Variable Operating Cost @ 100% CF, \$MM         | \$21.4          | Variable Operating Cost @ 100% CF, \$MM         | \$31.4          |
| Fuel Cost @ 100% CF, \$MM                       | \$138.8         | Fuel Cost @ 100% CF, \$MM                       | \$179.0         | Fuel Cost @ 100% CF, \$MM                       | \$238.0         |
| Annual MWh (100% CF)                            | 5,720,222       | Annual MWh (100% CF)                            | 5,613,735       | Annual MWh (100% CF)                            | 7,582,958       |
| LCOE Breakdown, \$/MWh                          |                 | LCOE Breakdown, \$/MWh                          |                 | LCOE Breakdown, \$/MWh                          | , ,             |
| Capital Charges                                 | \$43.3          | Capital Charges                                 | \$20.2          | Capital Charges                                 | \$22.0          |
| Fixed O&M                                       | \$13.9          | Fixed O&M                                       | \$6.6           | Fixed O&M                                       | \$7.0           |
| Variable O&M                                    | \$12.8          | Variable O&M                                    | \$3.8           | Variable O&M                                    | \$4.1           |
| Fuel                                            | \$24.3          | Fuel                                            | \$31.9          | Fuel                                            | \$31.4          |
| LCOE (excl. CO <sub>2</sub> T&S), \$/MWh        | \$94.3          | LCOE (excl. CO <sub>2</sub> T&S), \$/MWh        | \$62.5          | LCOE (excl. CO <sub>2</sub> T&S), \$/MWh        | \$64.5          |
| CO <sub>2</sub> T&S                             | \$10.0          | CO <sub>2</sub> T&S                             | \$3.7           | CO <sub>2</sub> T&S                             | \$3.8           |
| LCOE (incl. CO <sub>2</sub> T&S), \$/I/IWh      | \$104.3         | LCOE (incl. CO <sub>2</sub> T&S), \$/MWh        | \$66.2          | LCOE (incl. CO <sub>2</sub> T&S), \$/MWh        | \$68.3          |
| Breakeven CO <sub>2</sub> Sales Price, \$/t-CO2 | \$29.8          | Breakeven CO <sub>2</sub> Sales Price, \$/t-CO2 | \$52.0          | Breakeven CO <sub>2</sub> Sales Price, \$/t-CO2 | \$57.5          |

## Continuation of the Technology Development Path with DOE and CCSI<sup>2</sup>



FLECCS – Dynamic Capture from NGCC (2021-2024) Process

intensification to enable flexible capture, reduce capital expense

100 t-CO<sub>2</sub>/day

arpa·e

TRL 3-5



**TRL 4-5** 

ENERGY EFFICIENCY & RENEWABLE ENERGY





Projects currently underway or recently awarded

#### Project Summary : DE-FE0032218



Office of

FOSSIL ENERGY AND CARBON MANAGEMENT

# **Description:** GEN2NAS Solvents for $CO_2$ Capture from NGCC Plants **Key Metrics**

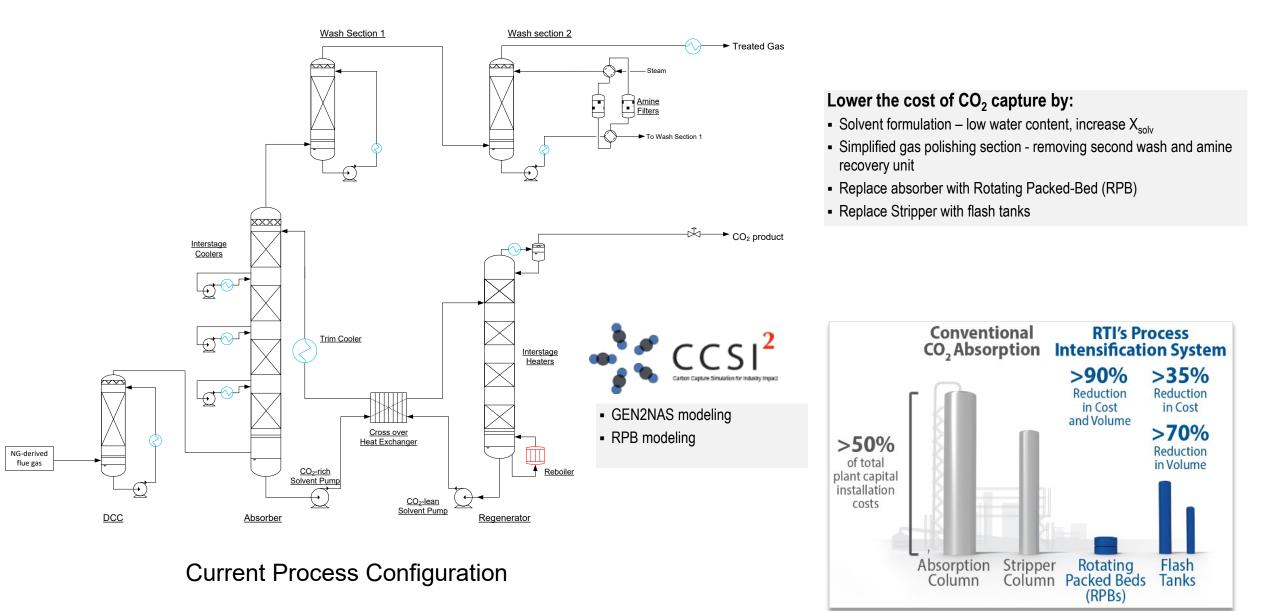
- >97% capture rate
- SRD: 2.1-2.5 GJ/ton-CO<sub>2</sub>
- Low vapor pressure, < 0.05 kPa (MEA's)
- Technoeconomic and Environmental Health, and Safety (EHS) evaluation

#### Specific Challenges

- Solvent scale-up
- Formulation optimization
- Process configuration

**Timeframe:** 04/01/23 - 09/30/24 **Total Funding:** \$1,250,000

#### Partners:



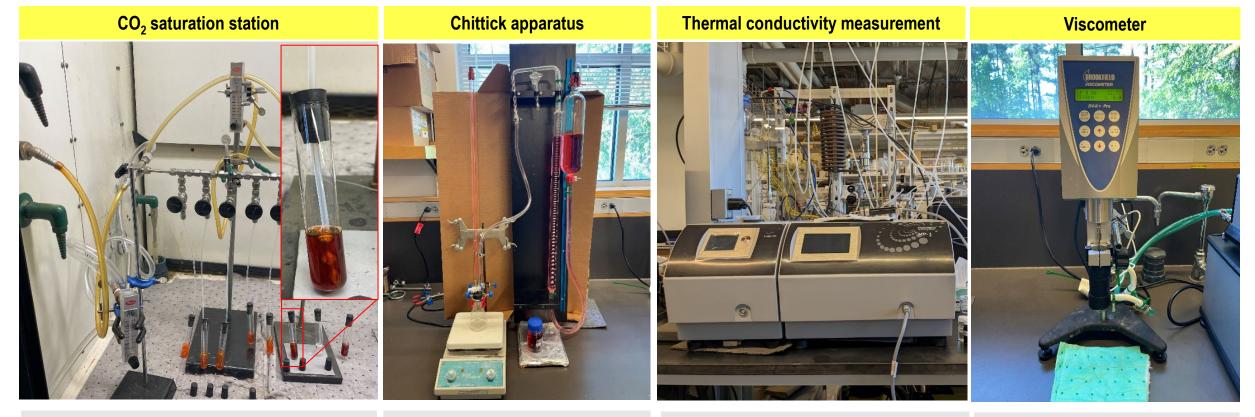







## Project Technical Merit




### Schedule

| Task            | Task title                                                         | Start<br>date   | End<br>date     | Budget Period 1 (BP1) |     |     |     |     |     |     |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------|-----------------|-----------------|-----------------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-------|-----|-----|-------|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                    |                 |                 | 2023                  |     |     |     |     |     |     | 2024 |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                    |                 |                 | Apr                   | Мау | Jun | Jul | Aug | Sep | Oct | No   | Dec | Jan | Feb | Mar   | Apr | Мау | Jun   | Jul | Aug | Sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0             | Project Management and Planning                                    | 04/01/23        | 09/30/24        |                       |     |     |     |     |     | 1   |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1             | Project Management Plan                                            | 04/01/23        | 09/30/24        |                       |     |     |     |     |     | ł   |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.2             | Technology Maturation Plan                                         | 04/01/23        | 09/30/24        |                       |     |     |     |     |     | I   |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.0             | Lab Testing of GEN2NAS                                             | 04/01/23        | 03/31/24        |                       |     |     |     |     |     |     |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.1             | Optimization of solvent blend                                      | 04/01/23        | 12/31/23        |                       |     | •   |     |     |     | Ī   |      |     |     |     |       |     |     |       |     |     | The second secon |
| 2.2             | Lab-scale gas absorption testing of selected solvent blends        | 10/01/23        | 03/31/24        |                       |     |     |     |     |     | Ì   |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.3             | Characterization of pure solvent blend components                  | 04/01/23        | 03/31/24        |                       |     |     |     |     |     | I   |      |     |     |     |       |     |     |       |     |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.0             | Kinetic Measurements of GEN2NAS                                    | 04/01/23        | 03/31/24        |                       |     |     |     |     |     |     |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.0             | RPB Testing                                                        | 01/01/24        | 09/30/24        |                       |     |     |     |     |     | T   |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.1             | Capture efficiency and Specific Reboiler Duty (SRD) measurements   | 01/01/24        | 06/30/24        |                       |     |     |     |     |     | Ì   |      |     |     |     |       |     |     | •     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.2             | Oxidative degradation measurements                                 | 04/01/24        | 09/30/24        |                       |     |     |     |     |     | ļ   |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.0             | Technoeconomic Assessment and Technology Maturation Plan<br>Update | 01/01/24        | 09/30/24        |                       |     |     |     |     |     | I   |      |     |     |     |       |     |     |       |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Milestone Log   |                                                                    | (proposal       | table)          | Α                     |     | В   |     |     |     |     |      |     | С   |     | D,E   |     |     | F     |     |     | G,H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Deliverables    |                                                                    | (As noted)      | (As noted)      | D1                    |     | D2  |     |     | D10 |     |      |     | D3  |     | D4,D5 | 5   |     | D6-D9 |     |     | D11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reporting       |                                                                    | (See footnote.) | (See footnote.) |                       |     |     | Q   |     |     | Q   |      |     | Q   |     |       | Q   |     |       | Q   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Meeting |                                                                    | (See footnote.) | (See footnote.) | Κ                     |     |     |     | В   |     |     |      |     |     |     |       |     |     |       |     | В   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Q = Quarterly report due one month after quarter's end; FR = Final report due three months after project end.

K = Project kick-off meeting; B = Project briefing (annual);

## Characterization and Property Measurement



- 8 separate saturation stations
- 10-20 ml sample size
- Adjustable CO<sub>2</sub> content and flow rates

- Determine sample CO<sub>2</sub> loading
- 3-5 ml per test
- Titration method
- CO2 quantified by gas volume displacement
- 20 ml sample size
- Temperature-controlled: 10-90 C
- Gas/liquid samples
- Ambient pressure cell

- cup-spindle design
- Jacketed cup for temperature control
- Ambient pressure

## **Characterization and Physical Property Measurement**



- Determine heat capacity, heat of absorption
- Solid/liquid samples
- 10 ml per test



- 1 ml sample size
- Open cell measurement
- CO<sub>2</sub>/H<sub>2</sub>O suppression built-in
- Identify functional groups
- Measure at ambient condition

- Generate VLE at different CO<sub>2</sub> partial pressures and temperatures

Automated HP-VLE cell

- Fully automated system
- 50 cc sample size
- 6 stations with multiple fee gases (CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, H<sub>2</sub>S, CO<sub>2</sub>, N<sub>2</sub>)
- Up to 120 C and 1,000 psig





- Continuous capture operation under relevant condition
- Fully automated system
- Qualitative energy input evaluation
- Emission monitoring and quantification
- 400 ml sample
- Ambient pressure operation

#### Kinetic Measurements

Pressure/Volume/Temperature (PVT) Cell Wetted-Wall Column (WWC)  $\hat{h}$ 

- Comprehensive measurements of vapor-liquid equilibria (PTx), mass transfer, and rheology on a single 50 mL sample

- Part of the PVT cell
- Kinetic data is collected with an internal mini wetted-wall contactor, where controlled adjustments of the cell volume allow for measurements of CO<sub>2</sub> flux

Pacific

Northwes

## Performance Testing



- SDoE
- Testing Task 4 starting January 2024

#### Commercialization with SLB

#### News Release

Schlumberger and RTI International Partner to Accelerate the Industrialization of Innovative Carbon Capture Technology

Published: 10/17/2022

#### A unique, versatile nonaqueous solvent

SLB and RTI International have partnered to industrialize and scale up an absorption-based carbon capture technology. The proprietary nonaqueous solvent (NAS) can be applied across a broad range of industrial sectors—from cement and steel manufacturing, coal and gas power generation, chemicals, and hydrogen.

With low energy consumption, simple process configuration, low corrosion chemistry, and fast reaction rates, NAS technology reduces energy consumption by up to 40% during CO<sub>2</sub> capture and minimizes both capex and opex compared with traditional solvents.

Read press release  $\rightarrow$ 



the seas - th

SLB exclusive licensor of the RTI NAS technology

Thanks for your attention! Marty Lail, Ph.D. Senior Director, Decarbonization Sciences **Technology and Commercialization RTI** International 3040 Cornwallis Rd. Research Triangle Park, NC 27709 919-485-5703 (o) 919-809-2204 (I)