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• What is a capacity expansion model? – Determining lease cost deployment of 
technologies to meet future load demand over multi-decade horizons in a region (state, 
ISO/RTO, nationwide)
– What technologies/ designs deployed, when and where?
– What generators will be retired, renewed and what technologies are phased out?

• At the core, an expansion planning model considers
– Systems with >𝟏𝟏𝟏𝟏𝟐𝟐 generators, >𝟏𝟏𝟏𝟏𝟑𝟑 transmission lines,
– Balancing loads over each of 𝟏𝟏𝟏𝟏𝟔𝟔 time periods,
– With numerous opportunities to install, extend, and retire assets,
– And significant uncertainty in all parameters (generator costs, available technology, load 

growth and patterns, renewable resources),

• Too large to “directly solve”

• Numerous simplifications and approximations to develop “tractable” models which will 
impact accuracy
– ACOFP  DCOPF  Transshipment
– Full network  “skeletonized” network  “copper plate”
– Individual generators  generator clusters
– Full time horizon  representative days  representative loads
– Discrete decisions  continuous relaxations

Expansion Planning and Why it is Hard
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• Integrated Energy Systems must be designed for the system
– Designing in isolation (e.g., “max efficiency”) does not guarantee participation / 

revenue from the market

• Existing expansion planning models focus primarily on capacity
– Operability (e.g., the role of dynamics, flexibility, and uncertainty) is not 

explicitly included, leading to results that overvalue LCOE and undervalue 
dispatchability and flexibility

– New and diverse set of technologies needed to reach decarbonization goals
– Advanced algorithms required to solve new, challenging problems

• Extending expansion planning models is more than just adding features
– Scaling up the model requires exploring new algorithmic approaches to solving 

the model. Model is open, allowing for customization for the problem you 
are interested in addressing

Why is IDAES Developing Expansion Planning Models?
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Improve/ develop new 
algorithms to address 
convergence challenges

Solving Problems that Represent Today’s Challenges
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San Diego County Case Study

ISO/RTO Scale Problem

Advanced Algorithms H
igher C

om
plexity

Improved capabilities in models (e.g. reliability)

Begin with smaller, less complex models (smaller regions/ 
time-scales)

Improved capability to 
address challenging 
problems on complex models



Accounting for Intermittency and Volatility
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• “Representative Days Only” 
underestimates total required 
capacity

• More dispatchable capacity required 
with additional capacity constraints 
and ramp events

Representative Days Only Additional Capacity and 
Ramp Constraints

• “Non-representative” capacity and ramp scenarios 
critical in understanding dispatchable unit requirements

• Modified algorithm provides insights into low renewable 
capacity and/or rapid dispatchable ramp scenarios

• Lazy capacity constraints
• Extreme ramp events  

* SPP scenarios under high carbon tax



• Develop reliability models and algorithms (Carnegie Mellon University, Seolhee Cho and 
Ignacio E. Grossmann)
– Improve valuation of flexibility
– Incorporate resilience with reliability
– Expand to new case studies (partnering with California Energy Commission)

• Model maturation (Sandia National Laboratory)
– Generalizing / standardizing the models, leveraging standardizing modeling 

components from EGRET
– Generalizing / standardizing algorithms (remove explicit ties to case studies)

Current IDAES Expansion Planning Activities
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Planning California’s Clean Energy 
Future

California is leading the clean 
energy revolution:

• California has a plan to manage 
the transition to clean energy

• Changing climate driving more 
frequent and extreme weather 
events

• California is creating modern rules 
to build a modern electrical grid
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California’s Clean Energy Future 
Depends Upon State of the Art Tools

The IDAES collaboration is delivering this much needed tooling.

Challenges with the available Capacity Expansion Modeling (CEM) tools 
commonly found in use:

• Ignore battery state-of-charge, diurnal and multi-period storage value dynamics
• Static network representations
• Fixed loads

Enhanced CEM capabilities will meet critical needs, especially around these 
modeling objectives:

• Advanced storage technology representations, across broader time scales
• Transmission availability / expansion; dynamic network topologies
• Flexible load representations; incorporating drivers of load uncertainty
• Explicit modeling of System Reliability and resilience.
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How to Improve Reliability in Expansion Planning
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Reliability ↑

• Reliability An ability to supply uninterrupted power to customers to satisfy the load demand.

• Adding extra generators, batteries, and transmission lines can improve the reliability of power 
systems.

• In case some facilities fail, other connected facilities can replace the workload of failed facilities 
to minimize power loss. 

• It should optimize where, when, and what type and size of facilities should be added to satisfy 
the load demand while improving reliability at a minimum cost. 



How to Evaluate Reliability – This work
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1) LOLE# (Loss of Load Expectation, unit: hours): time of not 
satisfying the load demand 

2) EENS* (Expected Energy Not Served, unit: MWh): the 
amount of demand that the system cannot satisfy 

LOLE & EENS ↓  Power System Reliability ↑

Ek: Unserved energy in capacity failure 
state k

pk: Probability of capacity failure state k
tk: Outage time of capacity failure state k

Outage (Failure state) k

Available capacity in failure state k

Time of loss of load tk

Installed capacity (MW)

Peak demand (MW)

Time (h)
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W
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Capacity reserve (MW)

Area = Ek

[3] R. Medjoudj et al., “Power system reliability: mathematical models and applications”, IntechOpen, 2017
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Overview of optimization model
Generalized Disjunctive Programming (GDP) model

Investment constraints
• Installation/lifetime extension of dispatchable generators
• Installation/capacity expansion of renewable generators and battery
• Installation of transmission lines

Min Cost = CAPEX + OPEX + Load shedding penalty

• Ramping up/down, start-up/shut-down, and unit commitment
• Charging/discharging levels of storage
• DC power flow and power balance
• Fuel consumption and CO2 emission estimation
• Simplified loss of load expectation (LOLE) and expected energy not served (EENS) estimation
• CO2 emission limit
• Minimum share of renewable generation

Operation constraints

s.t.

Python 3.10.12, Pyomo 6.6.2



Resource & Technology Status of San Diego County in 2021 

[4] Figure: https://cecgis-caenergy.opendata.arcgis.com/documents/CAEnergy::california-electric-generation-and-transmission-system-part-2-of-2, modified 2021-12-14
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< Generation and transmission network in 2021 >

https://cecgis-caenergy.opendata.arcgis.com/documents/CAEnergy::california-electric-generation-and-transmission-system-part-2-of-2


Case Study: Representation of San Diego County 

Carlsbad
Escondido

Otay Mesa
Chula Vista

Boulevard

 Horizon: 10-year planning
 3 representative days and 24 hours for each day
 Size: 4 nodes

Demand and supply nodes
Supply-only nodes

Assumptions
 Generator types: NG (Simple cycle), NGCC (w/o 

CCS), NGCC (w/ CCS), Wind turbine, PV, and Li-
ion battery. 

 Supply-only nodes (green circle) can only install 
renewable generator and batteries.

 Dispatchable generators in demand and supply 
nodes (red circle) can be extended, dispatchable 
generators (w/ and w/o CCS) can be installed, and 
renewable generators can be installed.

 Distance between nodes is estimated by measuring 
the distance between centers of each node.

Pala

Existing 
transmission lines

Potential 
transmission lines

1
2

3

4

Latitude/Longitude
① 32.210880 / -117.190754   ② 33.232716 / -116.320088 
③ 32.702726 / -116.270649   ④ 32.590562 / -116.802113
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Node 4

Node 1

Node 3

Node 2
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Technology data (investment and operating 
costs, size, emission rate)  is obtained from 

NETL and NREL, IRENA report. 
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CEC Case Study: Reliable and Carbon-neutral Power Systems
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California Policy and Regulatory Environment[6,7] Scenario #1 Scenario #2 Scenario #3

CO2 emission limits  (30% reduction by Y10) X O O

Renewable generation (60% of the total generation by Y10) X X O

Scenario #1 (No CO2 and renewable constraints) Scenario #2 (CO2 emission constraint included) Scenario #3 (both constraints included)

* All scenarios are forced to satisfy the target reliability level.

[5] California Peaker Power Plants: Energy Storage Replacement Opportunities, PSE Healthy Energy, 2020
[6] Greenhouse Gas Emission Tracking Report December 2021, California ISO, 2021 
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• Continue collaboration with the California Energy Commission
– Examining impacts of different methods of representing energy storage in 

expansion planning models, specifically in how it impacts reliability
– Improve algorithms to increase tractability in solving more complex 

problems (spatially and temporally) while considering reliability

• Advancing capabilities in Expansion Planning Models
– Improving integration with EGRET, generate plausible future detailed grids  

for validation
– Enhance technology selection, centralized around determining least-cost 

paths to decarbonization (CDR technologies, renewables, point-source 
CCS)

Future Work
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