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There is a growing demand for high water recovery 
desalination 
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Current 20th century paradigm - linear water economy

Potential 21st century paradigm – circular water economy

Treatment UseSource Treatment Disposal

Source Disposal

Treatment

Use

Reuse, recycle, recover

Products

• Centralized treatment
• Large distribution systems
• Discharge to the environment
• Traditional water sources

• Distributed fit for purpose treatment
• Limited transport
• Nutrient and mineral recovery
• Limited disposal
• Nontraditional water sources



Considering mineral precipitation and scaling is 
essential for evaluating high recovery systems
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Waste brine

Potential mineral scaling

Pretreatment

Feed

Waste solids

Pump

Reverse 
osmosis

High Pressure 
Reverse Osmosis

Mixer
Product water

Pump

Calcium sulfate scaling on RO element
Chesters and Armstrong. 2013. IDA World Congress on Desalination and Water Reuse

Accurately modeling mineral scaling and precipitation is critical:
• Defines key extent of treatment (minimum liquid discharge)
• Establishes the need for pretreatment

Feed



Mineral scaling is dependent on many dimensions
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Concentration (mg/L)
Components Brackish Seawater

Na 739 10,556
K 9 380

Ca 258 400
Mg 90 1,262
Cl 896 18,973

SO4 1,011 2,649
HCO3 385 140

Total TDS 3,388 34,360

A B

C D

pH = 7.07

pH = 6.5 pH = 6.5

pH = 7.56
Brackish Seawater

Mineral scaling depends on: ion concentrations/ratios, pH, 
pressure, temperature (not shown)



Modeling complex water chemistry is challenging 
and data intensive
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Mineral scaling and precipitation is dependent 
on speciation

• Numerous reactions and interractions across 
aqueous, vapor, and solid species

• Activities, solubility/scaling tendencies, diffusivity

• Dependent on concentrations of all ions

• pH, temperature, pressure are all significant

Components
Na
K

Ca
Mg
Cl

SO4
HCO3

CaHCO3
+ Ca2+ + HCO3

-

H2CO3 CO2 (aq) + H2O

H2CO3  H+ + HCO3
-

HCO3
- H+ + CO3

2-

H2O H+ + OH-

Carbonation Process

CaOH+ Ca2+ + OH-

CaCO3 Ca2+ + CO3
2-• Electrolyte theoretical models have numerous terms and 

parameters to represent all of the interactions (e.g., MSE, Pitzer, 
eNRTL)

• Data availability limits the species that can be considered
• Large models pose challenges for optimization



Integrating OLI and WaterTAP enables detailed water 
chemistry with process-scale cost optimization
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Soda Ash 
Softening Carbonation

Pump

Reverse 
osmosis

High Pressure 
Reverse Osmosis

Mixer
Product water

Waste brine

Feed

Waste solids

Precipitation

pH adjustment

Mineral scaling



Integrating OLI as a surrogate in WaterTAP
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1. Generate relevant brine scenarios

2. Use OLI Cloud API to calculate 
properties for brine scenarios

3. Use IDAES tools to fit a surrogate 
model to OLI properties

4. Use WaterTAP flowsheet with the 
OLI surrogate model

IDAES tools

WaterTAP flowsheet

Brine scenarios

Property predictions

Surrogate model

Concentrations#

Concentrations# Properties

𝑦𝑦1 = 𝑓𝑓𝑦𝑦1 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

𝑦𝑦𝑛𝑛 = 𝑓𝑓𝑦𝑦𝑛𝑛 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

…



Lessons learned from developing surrogates

8

1. It is critical to limit the number of independent variables for the simulated space

• Number of simulations grows dramatically with the variables: 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

• 50k simulations with 4 variables and 15 steps

• Best approach is to determine the critical decision variables for the optimization

OLI inputs
• Concentrations for 

7 species
• Temperature
• Pressure

OLI outputs
• Solids formed
• pH
• Scaling tendencies

Decision variables
• Soda ash dose
• CO2 dose
• Water recovery
• Pressure

Fixed feed composition 
and temperature



Lessons learned from developing surrogates
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1. It is critical to limit the number of independent variables for the simulated space

• Number of simulations grows dramatically with the variables: 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

• 50k simulations with 4 variables and 15 steps

• Best approach is to determine the critical decision variables for the optimization

2. Radial basis function (RBF) surrogate models with adaptative sampling performed best
• Regression model equivalents did not fit as well and were plagued by local solutions

• RBFs were the most accurate, useful, and flexible
• Low mean and maximum absolute error for large spaces

• Even RBFs with 100s of terms solved quickly

• Sampling techniques provide an easy way to hone the model



Developing accurate surrogate models
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Soda Ash 
Softening Carbonation

Pump

Reverse 
osmosis

High Pressure 
Reverse Osmosis

Mixer
Product water

Waste brine

Feed

Waste solids

Three surrogate models from OLI:
1. Soda ash softening – f(soda ash dose) 
2. Carbonation – f(soda ash dose, CO2 dose)
3. Mineral scale prediction at the end of RO – f(soda ash dose, CO2 dose, system recovery, pressure)



Developing accurate surrogate models
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Soda Ash 
Softening Carbonation

Pump

Reverse 
osmosis

High Pressure 
Reverse Osmosis

Mixer
Product water

Waste brine

Feed

Waste solids

Three surrogate models from OLI:
1. Soda ash softening – f(soda ash dose)
2. Carbonation – f(soda ash dose, CO2 dose)
3. Mineral scale prediction at the end of RO – f(soda ash dose, CO2 dose, system recovery, pressure)

Surrogate model CaCO3 (s) 
concentration pH

Model size (No. terms) 13 13
Model training time (s) 0.07 0.08

R2 0.9999 0.9998
Mean Absolute Error 0.510 0.0031

Maximum Absolute Error 7.59 mg/L 0.0315

0-750 soda ash dose, steps of 10, 76 total simulated points
B



Developing accurate surrogate models
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Soda Ash 
Softening Carbonation

Pump

Reverse 
osmosis

High Pressure 
Reverse Osmosis

Mixer
Product water

Waste brine

Feed

Waste solids

Three surrogate models from OLI:
1. Soda ash softening – f(soda ash dose)
2. Carbonation – f(soda ash dose, CO2 dose)
3. Mineral scale prediction at the end of RO – f(soda ash dose, CO2 dose, system recovery, pressure)

Surrogate model pH

Model size (No. terms) 101
Model training time (s) 445

R2 0.9999
Mean Absolute Error 0.0011

Maximum Absolute Error 0.0086

0-750 soda ash dose (76 steps), 0-300 CO2 dose (60 steps), 4560 total simulations

adaptive
sampling

C

• Uniform grid 51-point sample
• Adaptive 50-point for highest absolute error (AE)



Developing accurate surrogate models
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Soda Ash 
Softening Carbonation

Pump

Reverse 
osmosis

High Pressure 
Reverse Osmosis

Mixer
Product water

Waste brine

Feed

Waste solids

Three surrogate models from OLI:
1. Soda ash softening – f(soda ash dose)
2. Carbonation – f(soda ash dose, CO2 dose)
3. Mineral scale prediction at the end of RO – f(soda ash dose, CO2 dose, system recovery, pressure)

SI surrogate model CaCO3 Gypsum

Model size (No. terms) 150 150
Model training time (s) 8,370 10,300
R2 (0.75 < ST < 1.25) 0.96 0.99

Mean Absolute Error (0.75 < ST < 1.25) 0.0233 0.0183
Classification accuracy (%) 99.5 99.8

OLI simulation min - max (no. steps)

Soda ash dose (mg/L) 0 – 750 (16)
CO2 dose (mg/L) 0 – 300 (16)

Water recovery (%) 48 – 94 (24)
Hydraulic pressure (bar) 10 – 110 (11)

36,864 total simulated points • Uniform 50-point sample
• Adaptive 50-point for highest AE and misclassified
• Adaptive 50-point for highest AE in region of interest



Can optimize full treatment train across water recovery
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A

3



Determining optimal pretreatment and desalination
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Expanding the analysis through sensitivities
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BA



WaterTAP and OLI demonstrated integrated capabilities
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• Directly incorporated detailed water chemistry predictions with rigorous 
mathematical cost optimization at the process-scale 

• This work was enabled by the surrogate modeling tools in IDAES

• Surrogates based on flowsheet level decision variables and that used 
RBFs with adaptive sampling performed best

• WaterTAP and OLI believe this work shows significant promise and are 
expanding it for other analyses – crystallization, antiscalants, corrosion 
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Questions



Regressions fit data, RBFs interpolate data
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Regression models

• Most common type of surrogate

Linear: 𝑦𝑦 = 𝑏𝑏 + 𝑚𝑚 𝑥𝑥

Polynomial: 𝑦𝑦 = 𝛽𝛽0 + ∑𝑠𝑠∑𝑠𝑠=1𝑛𝑛 𝛽𝛽𝑠𝑠𝑠𝑠𝑥𝑥𝑠𝑠
𝑠𝑠

General: 𝑦𝑦 = 𝛽𝛽0 + ∑𝑠𝑠∑𝑠𝑠=1𝑛𝑛 𝛽𝛽𝑠𝑠𝑠𝑠𝑥𝑥𝑠𝑠
𝑠𝑠 + ∑𝑠𝑠=1𝑛𝑛 ∑𝑠𝑠<𝑗𝑗𝑛𝑛 𝛽𝛽𝑠𝑠𝑗𝑗𝑥𝑥𝑠𝑠𝑥𝑥𝑗𝑗

Can add other terms: ⁄𝑥𝑥𝑠𝑠 𝑥𝑥𝑗𝑗 ,  𝑥𝑥𝑠𝑠2𝑥𝑥𝑗𝑗 , sin 𝑥𝑥𝑠𝑠 , log 𝑥𝑥𝑗𝑗

• Objective: min
𝛽𝛽

∑ 𝑦𝑦𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 − 𝑦𝑦𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝
2

• Evaluate fit based on key metrics:
• Root mean squared error (RMSE)

• Coefficient of determination (R2)

• Mean absolute error (MAE)

• Maximum absolute error 

Radial basis functions (RBFs)

• General idea: value of any unknown point in 
domain is a function of its distance from the 
all known points around it

• Objective: min
𝜔𝜔

∑ 𝑦𝑦𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 − 𝑦𝑦𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝
2

2
1

3

1
2
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3

d1,4

d3,4

d2,4

𝑦𝑦4 = 𝜔𝜔1,4 � ℵ 𝑑𝑑1,4 + 𝜔𝜔2,4 � ℵ 𝑑𝑑2,4 +𝜔𝜔3,4 � ℵ 𝑑𝑑3,4

𝑦𝑦 = ∑𝑠𝑠=1𝑛𝑛 𝜔𝜔𝑠𝑠 � ℵ 𝑥𝑥 − 𝑥𝑥𝑠𝑠 Transformation functions
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