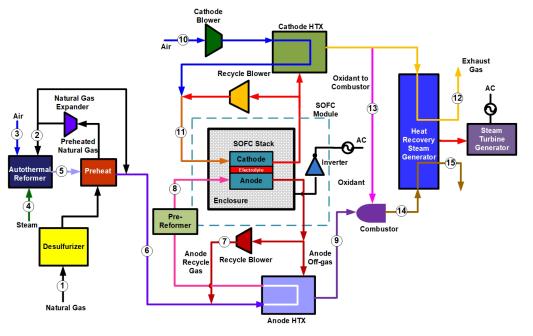


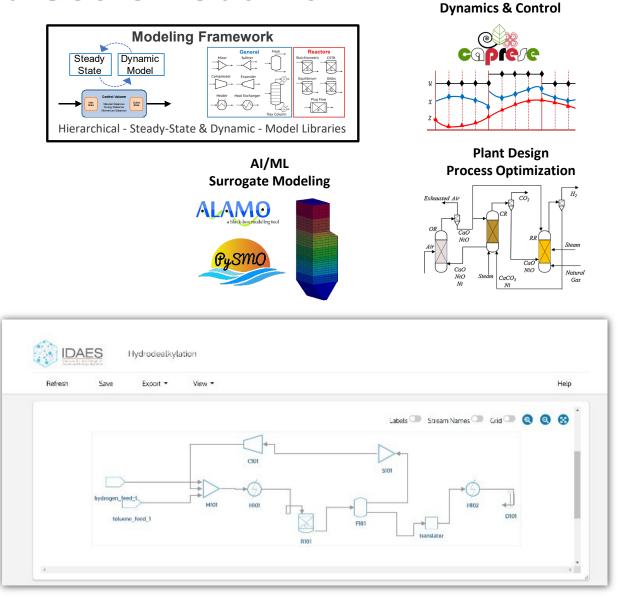



# **IDAES for Advanced Users**

Alejandro Garciadiego, Doug Allan, Miguel Zamarripa, Andrew Lee, Dan Gunter Stakeholder Summit 2023

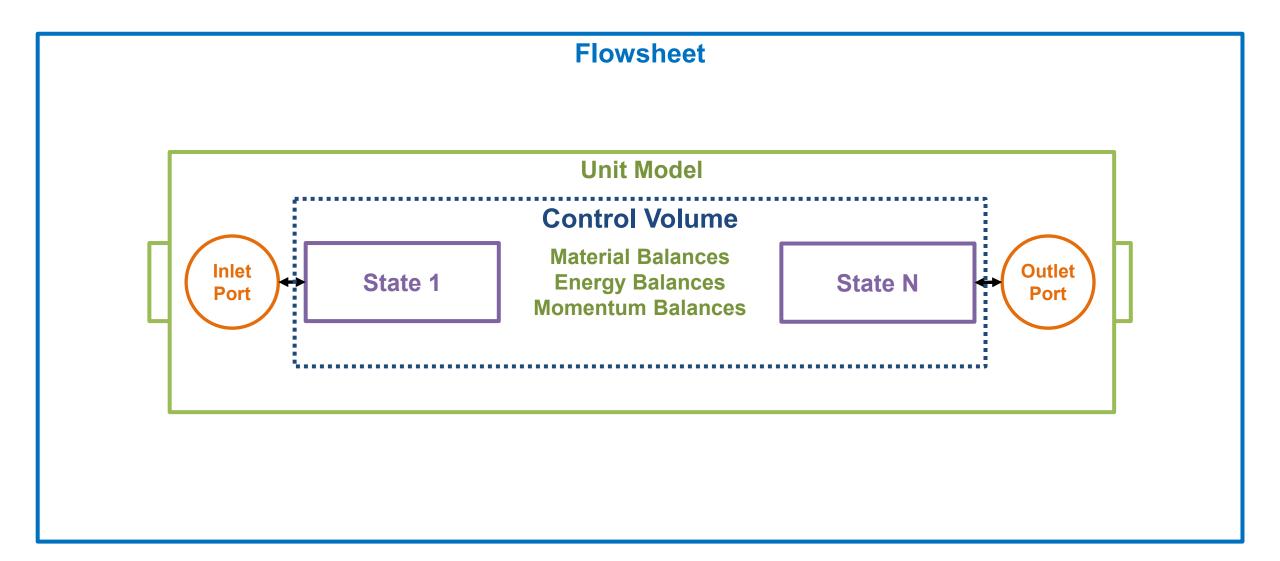



.S. DEPARTMENT OF



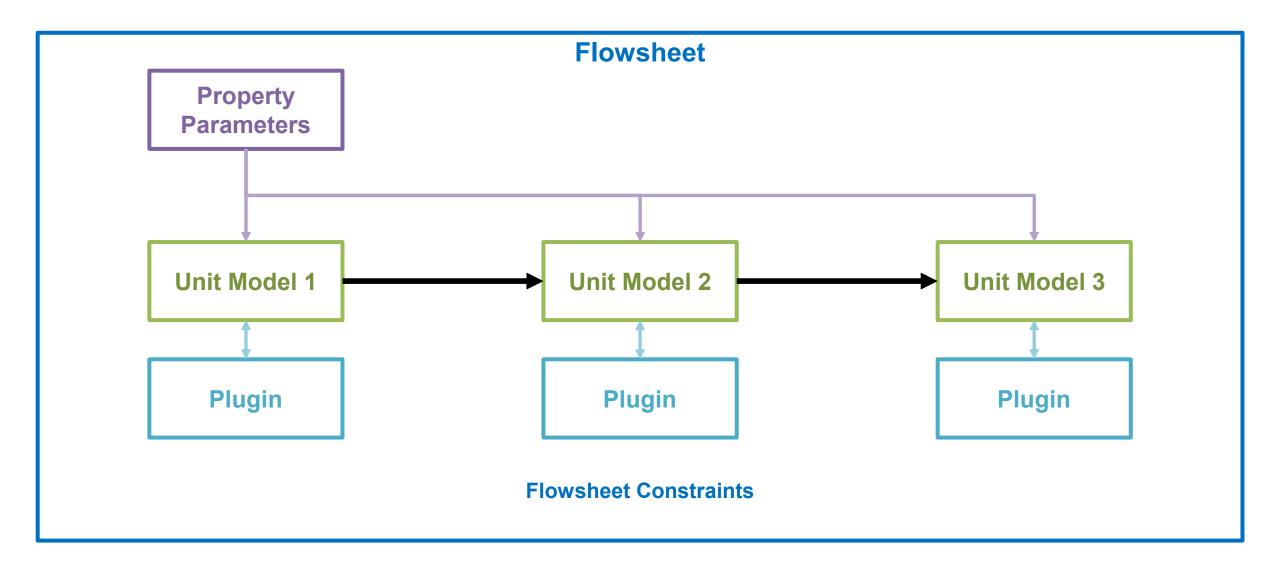

### **IDAES for Advanced Users - Outline**

- Model, Flowsheet, Costing Libraries
- Dynamic and Controllable Models
- Surrogate Modeling
- Diagnostics & Visualization

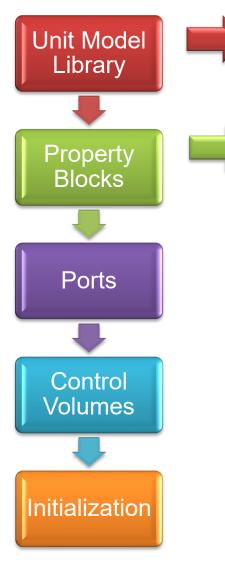



Case Study – Solid Oxide Fuel Cell Flowsheet in IDAES




**Process Operations** 

#### **Block Hierarchical Structure**

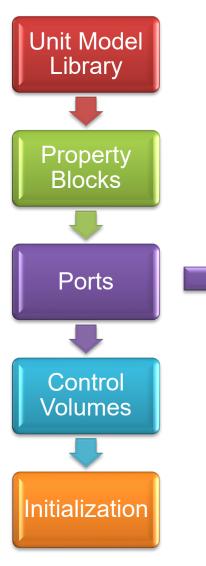





#### **Block Hierarchical Structure**



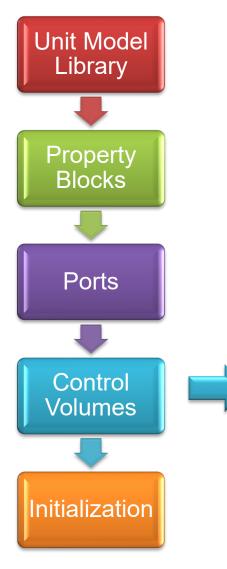





IDAES Unit Model Library provides basic unit models (i.e., mixers, splitters, flash drums) that can be used as building blocks for more complex models.

#### **Properties:**

- Implemented as modular blocks
- Flexibility to choose state variables
- Flexibility to use different property packages in same flowsheet
- Flexible formulation of equations


$$V = f(T, P, x) \qquad h = f(T, x) \qquad P_{sat} = f(T)$$
$$Cp = f(T) \qquad y_i = K_i x_i \qquad r = f(T, P, x)$$

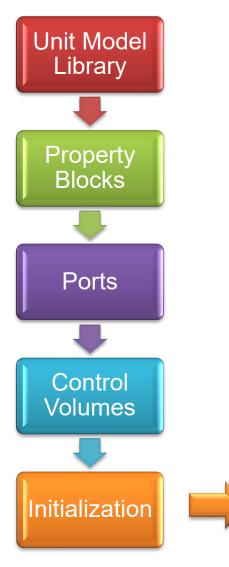


#### Ports:

- Defined via the property package
- Can connect to any other Port with the same members automatically
- Translator blocks to connect Ports with different state variables



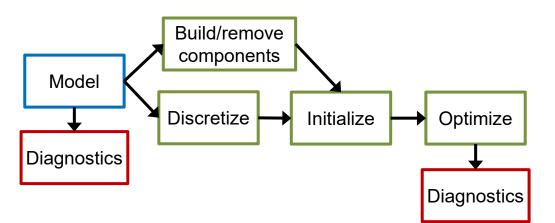



#### **Control Volumes:**

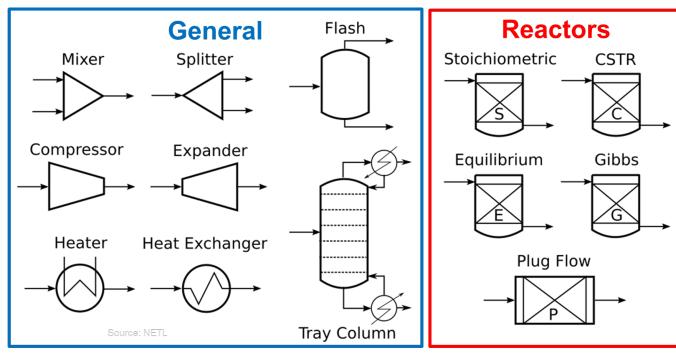
- Three types of Control Volumes available for different applications
  - 0-D (Inlet-Outlet type)
  - 1-D (Pipes, PFRs)
- Control Volumes can be connected together to develop complex multi-scale models
- Prebuilt methods for common forms of balance equations:

$$\frac{\partial M_{j}}{\partial t} = F_{in,j} - F_{out,j} + N_{rxn,j} + N_{eq,j} + N_{phase,j}$$
$$\frac{\partial E}{\partial t} = H_{in} - H_{out} + Q + W$$

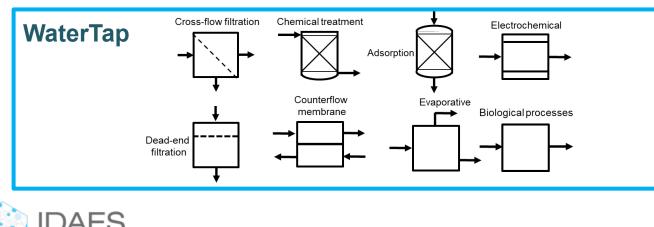
$$0 = P_{in} - P_{out} + \Delta P$$



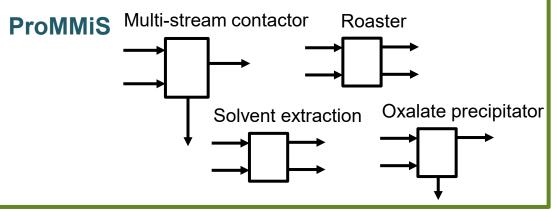




#### Initialization:

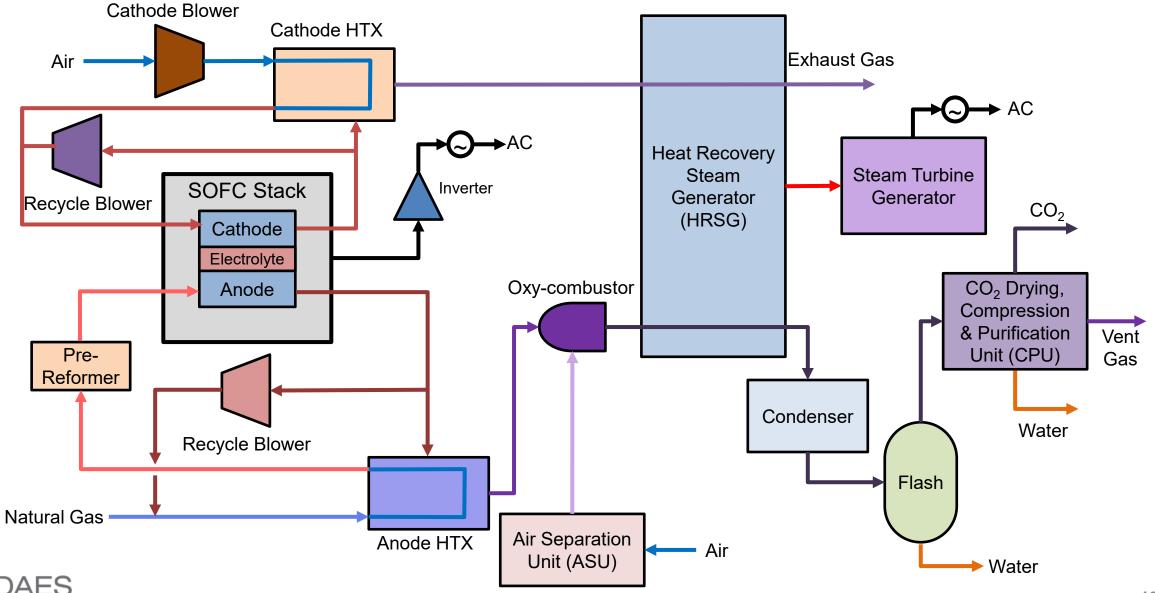
- Custom initialization routines
- IDAES developed tools for solving complex models
  - Decomposition solvers
  - Reliability and convergence tools
- IDAES diagnostics toolset (structural analysis, ...)


#### **Modular Framework**




#### **Unit models developed**




#### Project specific models developed leveraging IDAES:



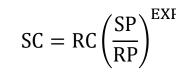
- Library of common thermodynamic models
  - Ideal
  - Cubic Equations of State
  - Helmholtz Equation of State
  - Electrolytes
- Extensive libraries for common unit operations
  - Mixers, Splitters, Heaters, Heat Exchangers, Pressure Changers, Reactors
  - Dynamics and Control
- Specialized Libraries for other equipment
  - Distillation, SOFC/SOEC, Power Generation, Gas-Solids Contactors, Gas-Liquid Absorption



### Solid oxide electrolysis cell (SOFC) Flowsheet building



# Cost Optimization in IDAES using NETL's QGESS<sup>1</sup> Methodology


#### **Data Sources**



Legacy Models

Public References **General Costing Library** 

| Unit                          | Cost Correlation                                                           | Basis                                                                       |  |
|-------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Heat Exchanger                | $C_B = f(area)$<br>$CP = (CE/500)F_DF_MC_B$                                | Area, Material, and pressure                                                |  |
| Reactors,<br>Flash,<br>Vessel | $C_V = f(W)$<br>$C_{PL} = f(D, L)$<br>$CP = (CE/500)C_{PL}F_MC_V$          | Material, Dimensions<br>(length, diameter)                                  |  |
| Compressor                    | $C_B = f(Pc)$<br>$CP = (CE/500)F_DF_MC_B$                                  | P <sub>c</sub> - Theoretical<br>reversible adiabatic<br>power (horsepower)  |  |
| Distillation<br>column        | $C_V = f(W)$ $C_{PL} = f(D,L)$ $C_{BT} = f(D)$ $CP = (CE/500)C_{PL}F_MC_V$ | Material, Dimensions<br>(length, diameter),<br>number and type of<br>trays. |  |
|                               |                                                                            |                                                                             |  |
| Scale costs as appropriate:   |                                                                            |                                                                             |  |
|                               |                                                                            |                                                                             |  |



SC: Scaled Cost RC: Reference Cost SP: Scaled Parameter RP: Reference Parameter Implementation



WaterTap: desalination and water treatment

**PARETO:** Produced water desalination and evaporation



<sup>1</sup> QGESS: Capital Cost Scaling Methodology Revision 4

https://github.com/IDAES/idaes-pse/tree/main/idaes/models\_extra/power\_generation/costing\_

#### Summary

- 1. Developed unit models and property models in the IDAES framework
- 2. Contributed unit model and flowsheet examples to the IDAES open-source GitHub repository
- 3. Developed costing in IDAES based on NETL's QGESS<sup>1</sup> Methodology
- 4. Modeled and simulated an initial NGFC flowsheet without CCS in IDAES Core Modeling Framework (CMF)
- 5. Developed a natural gas property package in IDAES CMF
- 6. Compared initial NGFC flowsheet with state-of-the-art commercial simulators
- 7. Contributed NGFC example to the IDAES open-source GitHub repository



### Motivation: Dynamic Modeling, Simulation, and Optimization

- No plant is truly at steady state
- When optimization is used for design, resulting plant may not be controllable
  - Setpoint transition
  - Start up/shut down
- Dynamic operation of integrated energy systems (IES) can take advantage of dynamic electricity pricing
- Equipment degradation occurs over thousands of hours

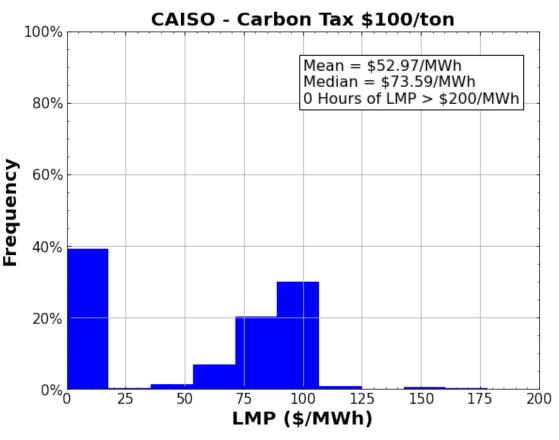
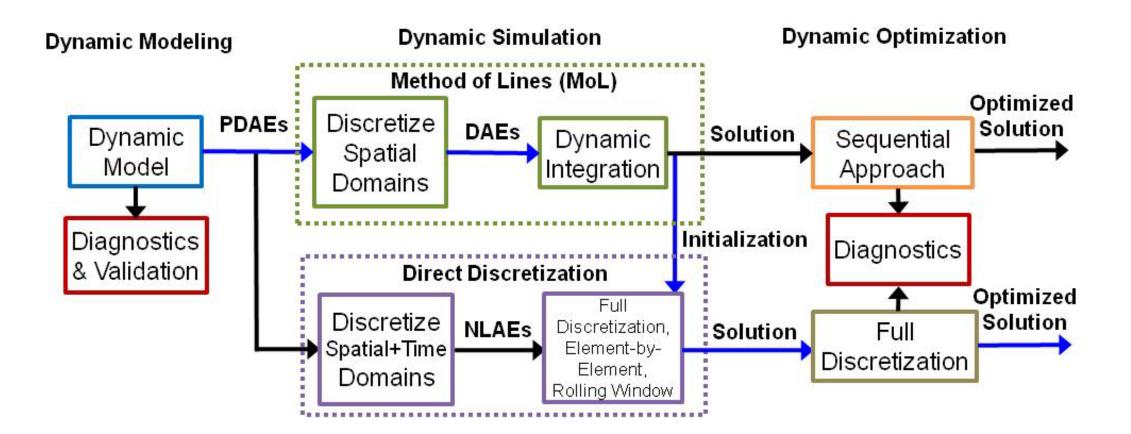




Figure from a presentation by Cortes et al.



(Price Signal Data): Cohen, Stuart; Durvasulu, Venkat (2021): NREL Price Series Developed for the ARPA-E FLECCS Program. National Renewable Energy Laboratory.

# **IDAES Dynamic Modeling/Simulation/Optimization Workflow**





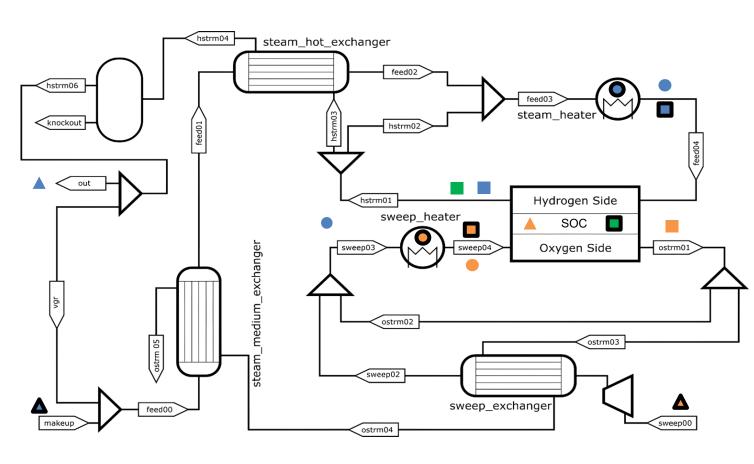
### **IDAES Dynamic Modeling/Simulation/Optimization Workflow**

#### • PYOMO DAE

- Develop differential algebraic equation (DAE) model
- Apply diagnostic tools for structural/numerical analysis
- IDAES
  - Set some/all unit models to be dynamic
  - PID Controller implemented with anti-windup
- Dynamic Simulation
  - Method-of-Lines (MoL) (AMPL/PETSc/TS)
  - Direct Discretization

#### – **Dynamic Optimization**

- Full Discretization
- Can implement nonlinear model predictive control (NMPC)



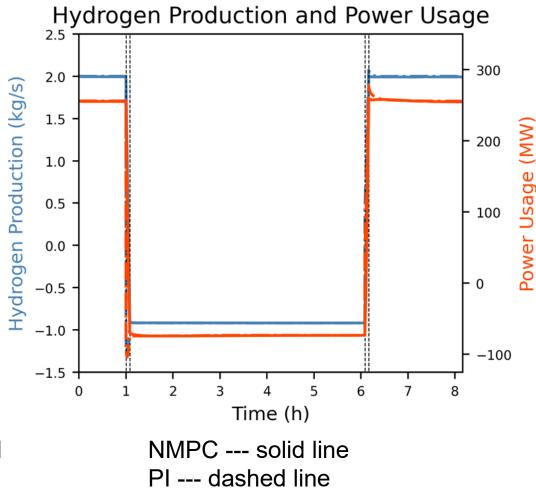





# Case Study: Control of Solid Oxide Cell (SOC)-IES

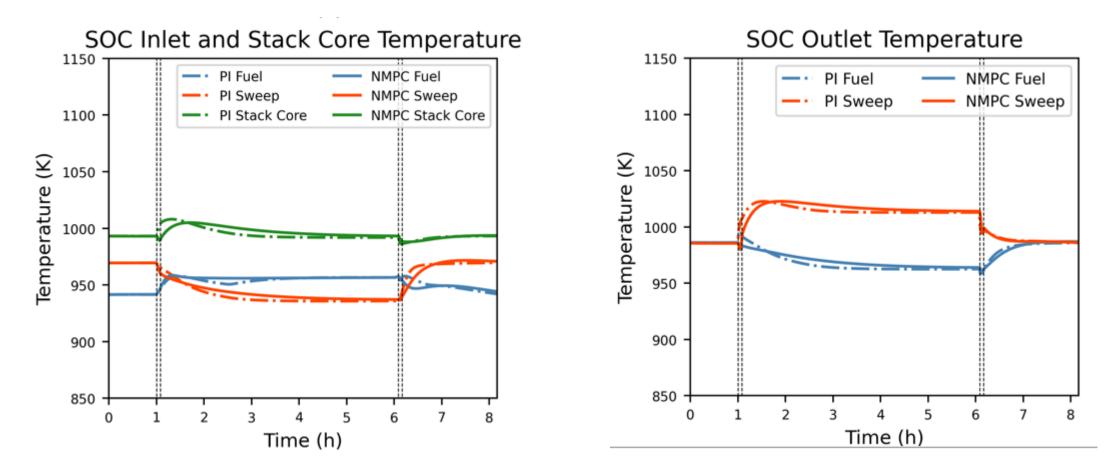
| Controller<br>Type | Manipulated<br>Variable (MV)               | Controlled Variable<br>(CV)        |
|--------------------|--------------------------------------------|------------------------------------|
| PI                 | Cell potential                             | SOC fuel outlet H2 mole fraction   |
| Р                  | Makeup feed rate 🔺                         | Hydrogen production                |
| Р                  | Sweep feed rate                            | SOC stack core<br>temperature      |
| PI (C1I)           | Steam heater duty <b>O</b>                 | Steam heater outlet<br>temperature |
| PI (C2I)           | Sweep heater duty O                        | Sweep heater outlet emperature     |
| P (C1O)            | Steam heater outlet  temperature setpoint* | SOC feed outlet temperature        |
| P (C2O)            | Sweep heater outlet                        | SOC sweep outlet temperature       |




- Plantwide Pl control setup with cascade control
- Compare to NMPC, which is better able to handle variable interactions and constraints



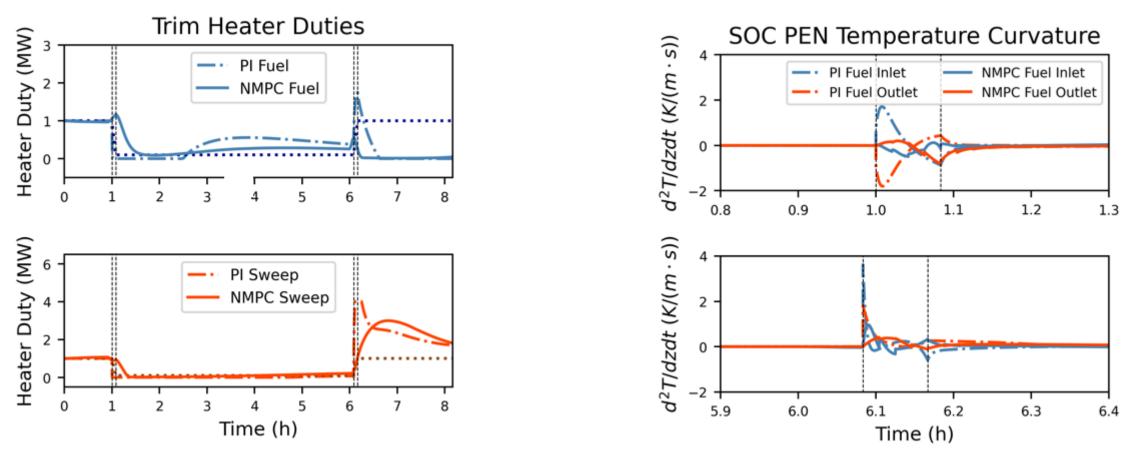
### **SOC-IES Case Study: Comparison of PI control to NMPC**


- Both PI and NMPC quickly transition between setpoints for maximum H<sub>2</sub> production to power generation (within 5-10 minutes) and back
- PI overshoots on power usage, whereas NMPC does not
  - Possibly able to be smoothed over by a local battery
- Both control methods are able to achieve a rapid transition

NMPC work by Mingrui (Michael) Li, Vibhav Dabadghao, and Lorenz (Larry) Biegler from CMU, more details on poster





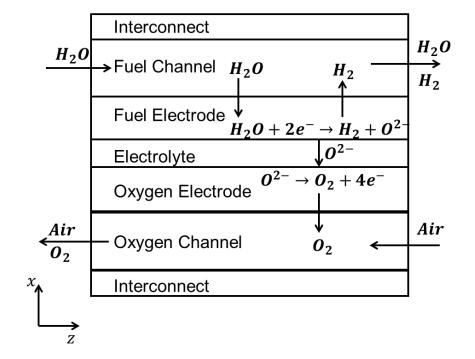

### **SOC-IES Case Study: Slow thermal dynamics**



• H<sub>2</sub> production responds immediately, but temperature takes hours to settle



## **SOC-IES Case Study: Trim heaters and mixed partials**




- Trim heaters are still engaged at end of time period, indicating the entire system is not at steady state yet
- NMPC can minimize magnitude of time derivative of cell temperature gradient (mixed partial) in order to reduce thermal failure probability

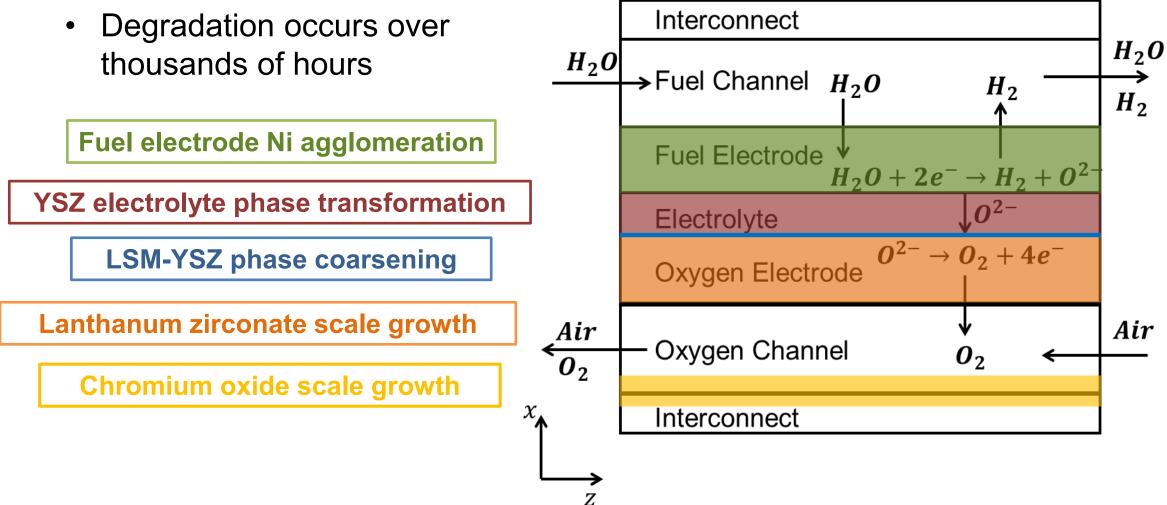
### **Case Study: SOEC Degradation Modeling**

- Due to degradation, SOC performance is timevarying.
- Optimize SOC system performance over cell's entire lifespan to maximize net present value (NPV)
- Cell experiences both physical and chemical degradation.
- Due to mass and heat integration, it is desired that the entire SOC-IES be considered.
- Results presented are for electrolysis mode only.
- Long timescales (up to 20,000 hours) mean that everything in IES besides cell is at steady-state

SOC degradation work by Nishant Giridhar, Quang Minh Li, and Debangsu Bhattacharyya at WVU, more details on poster



#### Planar fuel electrode supported SOC


#### Materials

- Fuel electrode Ni-YSZ
- Oxygen electrode LSM-YSZ
- Electrolyte YSZ

#### Modeling details

- First principles dynamic 2-D, non-isothermal equation-oriented model
- Capable of SOFC and SOEC operation
- This work SOEC

#### **SOEC Microstructure Degradation Modeling**





## **Optimizing Long-Term SOEC System Operation**

#### Case 0: Constant Temperature

- Constant H<sub>2</sub> production rate at 1.5 kg/s
- Constant temperature at SOC inlets

Decision variables at each time point:

- 1. Feed heater duties
- 2. Sweep heater duties
- 3. Sweep blower flowrate
- 4. Feed exchanger flowrate
- 5. Feed recycle ratio
- 6. Sweep recycle ratio

#### Case 1: Maximize Integral Efficiency

- Constant H<sub>2</sub> production rate at 1.5 kg/s
- Objective: Maximize integral efficiency for the flowsheet.

 $1 \sum_{f}^{t_f}$ 

# Case 2: Minimize Final Degradation

- Constant H<sub>2</sub> production rate at 1.5 kg/s
- Objective: Minimize resistance
   growth for oxygen electrode

$$min \frac{R_{tf}}{\Delta t}$$
st.
$$h(x) = 0$$

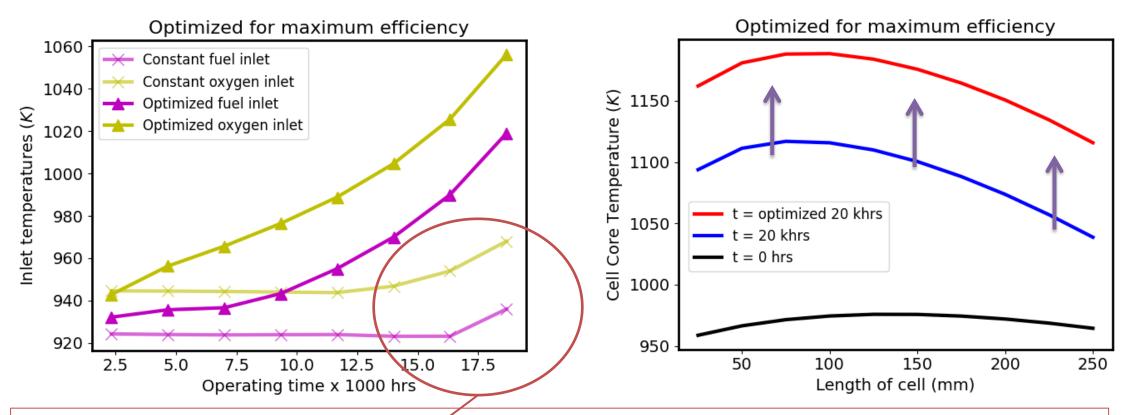
$$\frac{dR}{dt} = f_R(x, t)$$

$$j_t = j_0 \qquad \forall t$$

$$max \frac{1}{t_f} \sum_{t=0}^{t} \eta_{th,t} \Delta t_t$$
  

$$st.$$
  

$$h(x) = 0$$
  

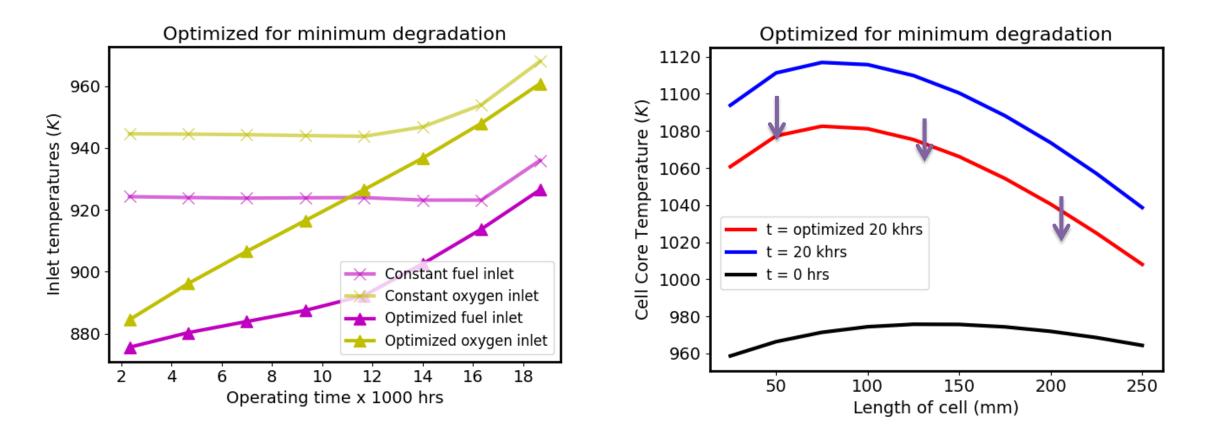

$$\frac{dR}{dt} = f_R(x,t)$$
  

$$j_t = j_0 \qquad \forall t$$
  

$$HHV(H_2,t)$$

 $\eta_{th,t} = -$ 

### Case 1. Maximize SOEC Efficiency over 20,000 hrs of Operation

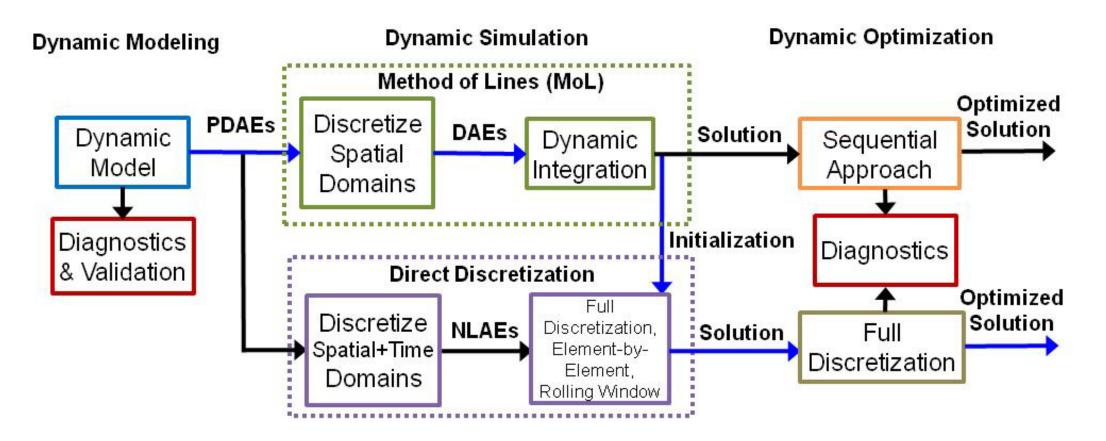



Inlet temperatures for maximizing efficiency:

- Inlet temperative losses
- Increase
   Increase



### Case 2. Minimize SOEC Degradation over 20,000 hrs of Operation




#### Inlet temperatures for minimizing degradation:

- Inlet temperatures remain low throughout the operating period.
- Cell core temperatures about 60 K lower than the constant temperature case.

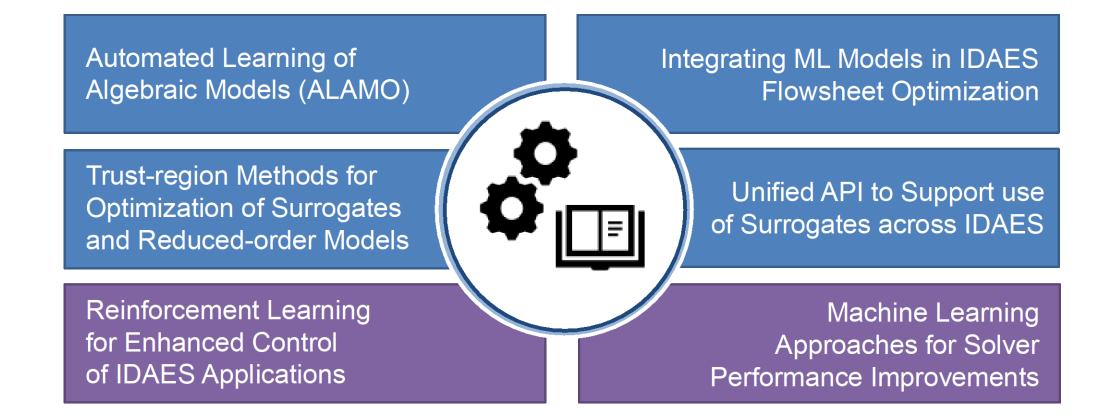


#### **Dynamics Questions**



Questions about Pyomo/IDAES dynamic capabilities?



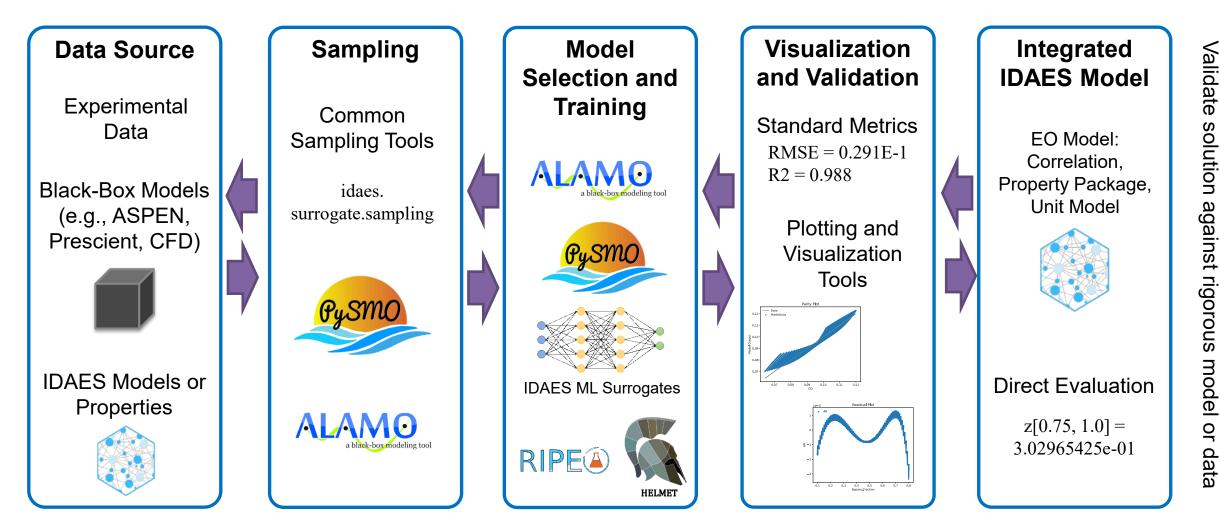

### **Surrogate Modeling in IDAES**

#### What it is new?

Development: Trust region framework, examples, notebooks, Application: market integration, SOFC examples, etc.



### Machine Learning and AI for Optimization



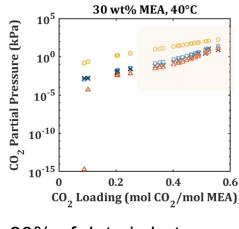

Fundamental Tools Enabling Workflows Across IDAES Team

#### "Consistent Framework to Validate/Verify ML/AI Tools for Optimization"



### **IDAES Framework: Surrogates for Optimization**




solution against rigorous model or data

#### 1.- Data Source "Best Practices"

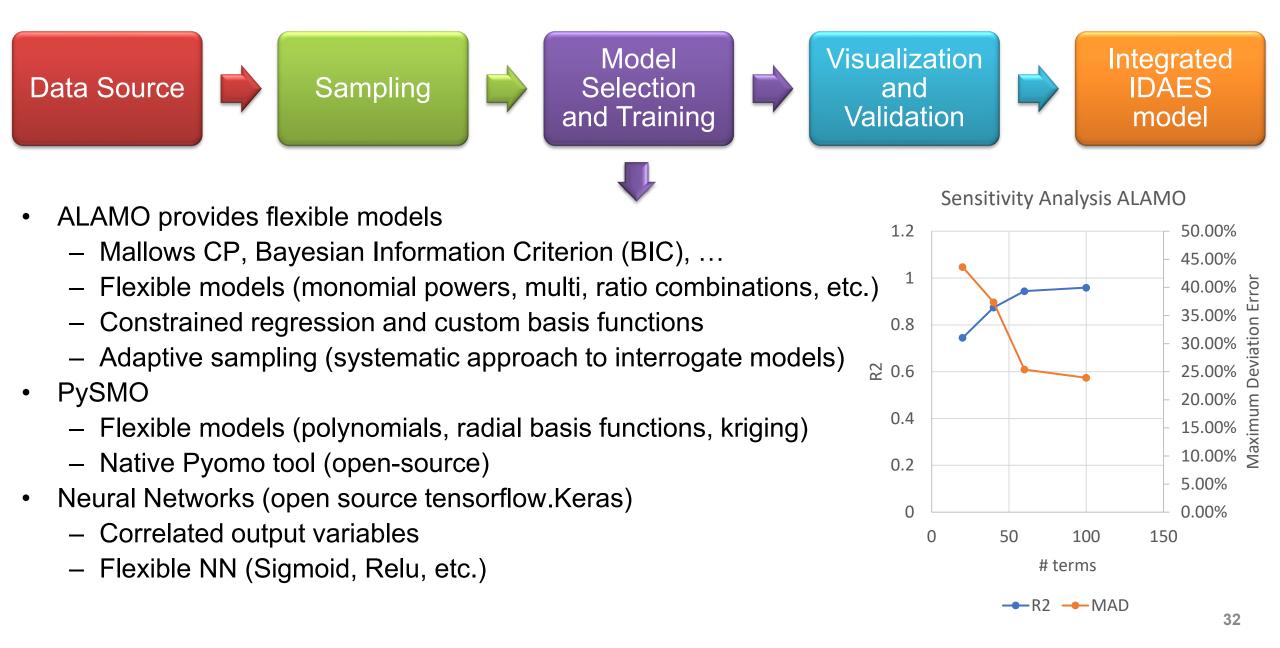


#### Ensure quantity and quality

- Experiments: visualize data to guarantee sampling distribution
- Simulation: ensure model robustness



80% of data is between 0.4 and 0.6  $CO_2$  loading


## 2.- Sampling "Best Practices"



- Identify samples within the Population
  - Remove "bad data"
  - Remove infeasible operating conditions
- Training data and Validation data

```
df = pd.read_excel(fname, sheet_name='data_set.xlsx')
n_data = df[input_labels[0]].size
df_training, df_validation = split_training_validation(df, 0.8, seed=n_data)
```

### **3.- Model Selection "Best Practices"**



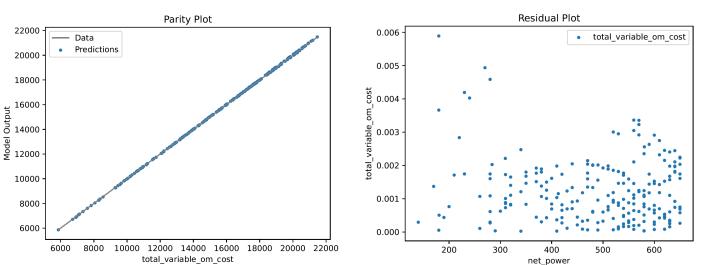
## **4.- Model Verification/Validation**



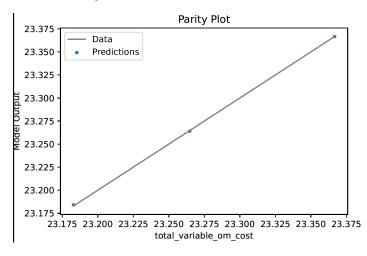
- The IDAES framework developed several tools for validating and verifying the surrogate models.
  - Plotting tools provide visual verification (parity, scatter errors, ...)
  - Model statistics provide a good idea of model fitting and errors (R2, RMSE, MAD, etc.)



#### **4.- Model Verification/Validation**


df\_training, df\_validation = split\_training\_validation(df, 0.8, seed=n\_data)
# Train surrogate (this will call to Alamo through AlamoPy)
success, alamo\_surrogate, msg = trainer.train\_surrogate()

#### # Display the metrics of fit


metrics = compute\_fit\_metrics(alamo\_surrogate, df\_validation)
# Generate residual and parity plots
surrogate\_residual(alamo\_surrogate, df\_validation, filename=fname, relative\_error=True)
surrogate\_parity(alamo\_surrogate, df\_training, filename=fname, relative\_error=True)
surrogate\_parity(alamo\_surrogate, df\_training, filename=fname, relative\_error=True)

80% of data for training 20% for validation

#### Training Data Set

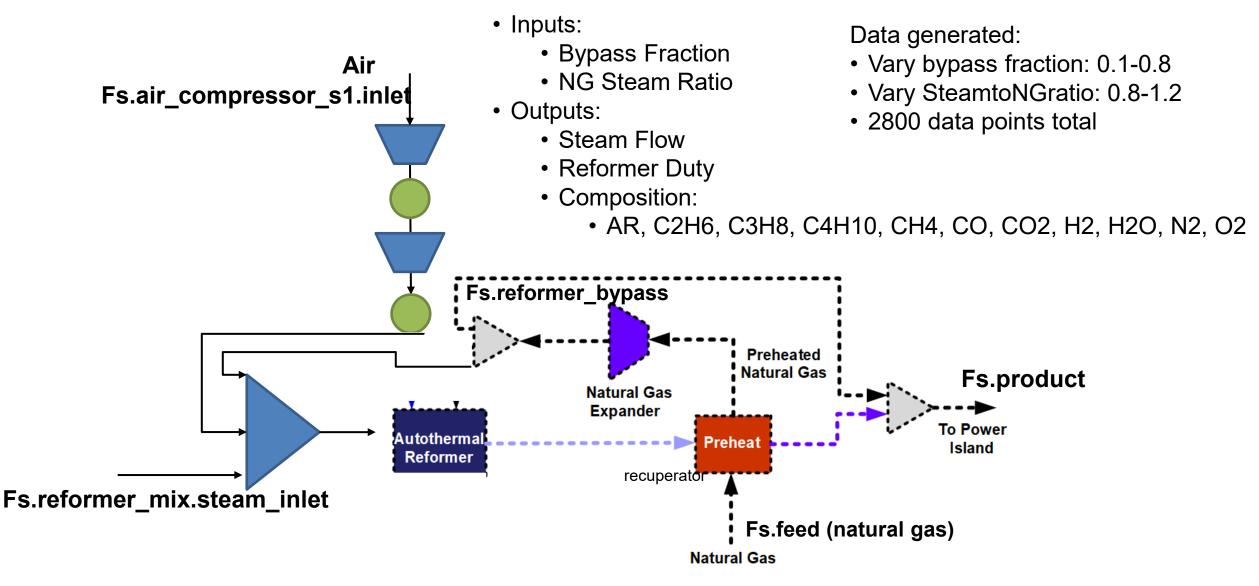


#### Independent Data Set



### **5.- Surrogates for Optimization**






 Two main aspects: 1.- integrating the surrogate models in the mathematical model, and 2.- robustness of the final mathematical model.

Conventional surrogate model implementation

Automated surrogate modeling implementation

### **End to End Demonstration: Autothermal Reformer Example**





### **Sampling "Best Practices"**



IDAES Models and Properties



2800 samples (grid sampling method)

idaes. surrogate.sampling

#### ALAMO Python Wrapper

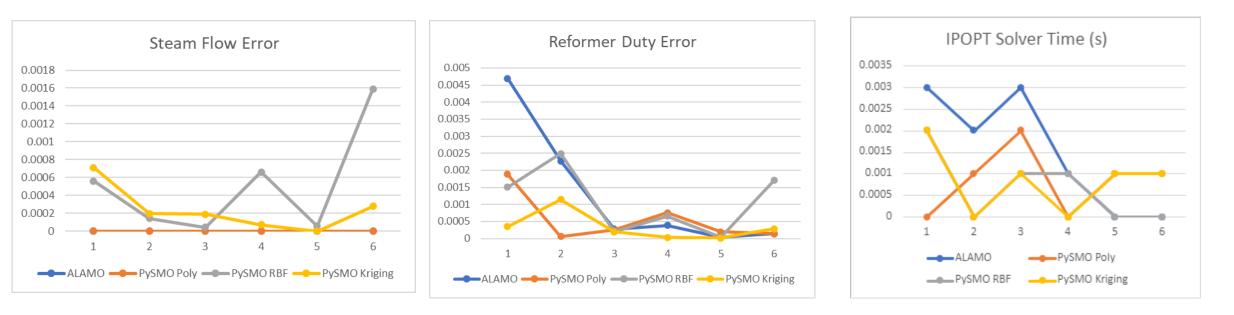
- Highly tractable models (flexible, minimizes model size)
- Allows model validation, as well as multi-input/output


#### PySMO (Polynomial, RBF, Kriging)

- Restrictive model forms, but highly accurate
- Allows model validation, as well as multi-input (single output)

#### Tensorflow Keras (Sequential)

- Option-dependent accuracy, a priori knowledge is helpful
- Free of expression-driven modeling models are complex
- Sequential limited to single input/output layer (see Functional API)


# **Sampling "Best Practices"**



Cases

## **Sampling "Best Practices"**





# Examples of when and why to use surrogates?

- Reducing model size, improve performance
  - Model more general than needed by a particular application (e.g., SOEC market analysis, auto-thermal reformer)
  - Opportunity to reduce model size and complexity
- Replacing "external" models (e.g., compiled code)
  - Convert external model to an EO model (e.g., fire side boiler, grid market surrogates)
  - Opportunity to obtain native EO model and improve performance
- Data-driven models
  - Data to replace missing first-principles model
- Improve convergence reliability
  - Push convergence challenges "offline" (controlled initialization)
  - Produce data from rigorous model surrogate for application (e.g., auto-thermal reformer)
- Global optimization and MINLP (discrete + nonlinear)
  - Improve performance by replacing detailed nonlinear model
  - Surrogates may be lower order or piecewise linear





٠



# **IDAES Diagnostics Toolbox**

Andrew Lee, Stakeholder Summit 2023







#### **Bad models are easy to write**

- A model can only be valuable if you can solve it
- Good models take time and experience
   We spend a significant amount of time debugging models
- One of the biggest limitations on the adoption of EO tools



# A Simple Example...

8 Variables: **import** pyomo.environ **as** pyo v1: [m] m = pyo.ConcreteModel() v2: [m] **v**3: ∈ [0, 5] m.v1 = pyo.Var(units=pyo.units.m) Fix 3 Degrees of Freedom v5: ∈ [0, 1]  $v_4 = 2$  : m.v4.fix(2) v7:  $[m], \in [0, 1]$  $v_5 = 2$  : m.v5.fix(2) ounds=(0, 1))  $v_6 = 0$  : m.v6.fix(0)

 $\Pi v = \rho v v a \eta$ 

#### 4 Constraints:

v4:

v6:

v8:

c1:  $v_1 + v_2 = 10$ c2:  $v_3 = v_4 + v_5$ c3:  $2v_3 = 3v_4 + 4v_5 + v_6$ c4:  $v_7 = 1 \times 10^{-8} v_1$ 

m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10)m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)m.c3 = pyo.Constraint(expr=2\*m.v3 == 3\*m.v4 + 4\*m.v5 + m.v6)m.c4 = pyo.Constraint(expr=m.v7 == 1e-8\*m.v1)

## ...and a Common Outcome

EXIT: Converged to a point of local infeasibility. Problem may be infeasible. WARNING: Loading a SolverResults object with a warning status into model.name="unknown";

- termination condition: infeasible
- message from solver: Ipopt 3.13.2\x3a Converged to a locally infeasible point. Problem may be infeasible.



## If Only There Was A Tool To Help...

# from idaes.core.util import DiagnosticsToolbox

dt = DiagnosticsToolbox(m)

dt.report\_structural\_issues()







Activated Blocks: 1 (Deactivated: 0) Free Variables in Activated Constraints: 4 (External: 0)

Model Statistics

Activated Blocks: 1 (Deactivated: 0)
Free Variables in Activated Constraints: 4 (External: 0)
 Free Variables with only lower bounds: 0
 Free Variables with only upper bounds: 0
 Free Variables with upper and lower bounds: 2
Fixed Variables in Activated Constraints: 3 (External: 0)
Activated Equality Constraints: 4 (Deactivated: 0)
Activated Inequality Constraints: 0 (Deactivated: 0)
Activated Objectives: 0 (Deactivated: 0)

suggested next steps.

IDAES Institute for the Design of Advanced Energy Systems display\_components\_with\_inconsistent\_units()
display\_underconstrained\_set()
display\_overconstrained\_set()

\_\_\_\_\_

Model Statistics

Activated Blocks: 1 (Deactivated: 0)
Free Variables in Activated Constraints: 4 (External: 0)
 Free Variables with only lower bounds: 0
 Free Variables with only upper bounds: 0
 Free Variables with upper and lower bounds: 2
Fixed Variables in Activated Constraints: 3 (External: 0)
Activated Equality Constraints: 4 (Deactivated: 0)

2 WARNINGS

WARNING: 1 Component with inconsistent units
WARNING: Structural singularity found
Under-Constrained Set: 3 variables, 2 constraints
Over-Constrained Set: 1 variables, 2 constraints

Caution: 1 variable fixed to 0 Caution: 1 unused variable (0 fixed)

Suggested next steps:

display\_components\_with\_inconsistent\_units()
display\_underconstrained\_set()
display\_overconstrained\_set()



| Second Statistics                                         |
|-----------------------------------------------------------|
| Activated Blocks: 1 (Deactivated: 0)                      |
| Free Variables in Activated Constraints: 4 (External: 0)  |
| Free Variables with only lower bounds: 0                  |
| Free Variables with only upper bounds: 0                  |
| Free Variables with upper and lower bounds: 2             |
| Fixed Variables in Activated Constraints: 3 (External: 0) |
| Activated Equality Constraints: 4 (Deactivated: 0)        |
| Activated Inequality Constraints: 0 (Deactivated: 0)      |
| 1 variable fixed to 0<br>1 unused variable (0 fixed)      |
| Caution: 1 wariable fixed to 0                            |

Caution: I variable fixed to U Caution: 1 unused variable (0 fixed)

Suggested next steps:

display\_components\_with\_inconsistent\_units()
display\_underconstrained\_set()
display\_overconstrained\_set()



Model Statistics Activated Blocks: 1 (Deactivated: 0) Free Variables in Activated Constraints: 4 (External: 0) Free Variables with only lower bounds: 0 Free Variables with only upper bounds: 0 Free Variables with upper and lower bounds: 2 Fixed Variables in Activated Constraints: 3 (External: 0) Activated Equality Constraints: 4 (Deactivated: 0) Suggested next steps: display components with inconsistent units() display\_underconstrained\_set() display overconstrained set()

> Caution: 1 variable fixed to 0 Caution: 1 unused variable (0 fixed)

Suggested next steps:

display\_components\_with\_inconsistent\_units()
display\_underconstrained\_set()
display\_overconstrained\_set()



#### **Inconsistent Units**

dt.display\_components\_with\_inconsistent\_units()

\_\_\_\_\_\_

The following component(s) have unit consistency issues:

#### с1

For more details on unit inconsistencies, import the assert\_units\_consistent method from pyomo.util.check\_units

c1: 
$$v_1 + v_2 = 10$$

$$v_1 - [m]$$
  
 $v_2 - [m]$ 



## **Structural Singularities**

dt.display\_overconstrained\_set()

Dulmage-Mendelsohn Over-Constrained Set Independent Block 0: Variables: v3 2 Constraints, 1 Variable Constraints: -1 Degrees of Freedom! с2 сЗ



## **Structural Singularities**

dt.display\_overconstrained\_set()

Dulmage-Mendelsohn Over-Constrained Set

Independent Block 0: Variables: v3 Constraints:  $c_{2}^{2}_{c_{3}}$   $c_{2}^{2}$   $c_{3}$   $c_{2}^{2}$   $c_{3}$   $c_{2}^{2}$   $c_{3}^{2}$   $c_{2}^{2}$   $c_{3}^{2}$   $c_{3}^{2}$ 

#### Fixed 1 Variable I shouldn't have: m.v4.unfix()



## **Structural Singularities**

dt.display\_underconstrained\_set()

Dulmage-Mendelsohn Under-Constrained Set Independent Block 0: Variables: v2**3 Variable, 2 Constraints** v1 **1 Degrees of Freedom!** 77 Constraints: Shows which variables I can fix с1 c4 Fix 1 of these Variables:  $v_2 = 5$  : m.v2.fix(5)



## Lets Try Again...

\_\_\_\_\_

Model Statistics

Activated Blocks: 1 (Deactivated: 0)
Free Variables in Activated Constraints: 4 (External: 0)
 Free Variables with only lower bounds: 0
 Free Variables with only upper bounds: 0
 Free Variables with upper and lower bounds: 2
Fixed Variables in Activated Constraints: 3 (External: 0)

Suggested next steps:

Try to initialize/solve your model and then call report numerical issues()

\_\_\_\_\_\_

2 Cautions

Caution: 1 variable fixed to 0 Caution: 1 unused variable (0 fixed)

Suggested next steps:

Try to initialize/solve your model and then call report numerical issues()



## Still a Common Outcome...

EXIT: Converged to a point of local infeasibility. Problem may be infeasible. WARNING: Loading a SolverResults object with a warning status into model.name="unknown";

- termination condition: infeasible
- message from solver: Ipopt 3.13.2\x3a Converged to a locally infeasible point. Problem may be infeasible.



#### **Numerical Issues**

|            | Model Statistics                                                                       |
|------------|----------------------------------------------------------------------------------------|
|            | Jacobian Condition Number: 1.700E+01                                                   |
|            |                                                                                        |
| 2 WARNINGS |                                                                                        |
| WARNING:   | 1 Constraint with large residuals                                                      |
| WARNING:   | 2 Variables at or outside bounds                                                       |
|            |                                                                                        |
|            | Caution: 1 extreme Jacobian Entry                                                      |
|            | Suggested next steps:                                                                  |
|            | display_constraints_with_large_residuals()<br>display_variables_at_or_outside_bounds() |
|            |                                                                                        |



#### **Numerical Issues**

Caution: 1 extreme Jacobian Entry

Suggested next steps:

display\_constraints\_with\_large\_residuals()
display\_variables\_at\_or\_outside\_bounds()



# **Possible Bounds Violations**

dt.display\_variables\_at\_or\_outside\_bounds()

The following variable(s) have values at or outside their bounds:

```
v3 (free): value=0.0 bounds=(0, 5)
v5 (fixed): value=2 bounds=(0, 1)
```

#### **Two Issues**

- v3 : might be limited by lower bound, possibly infeasible
- v5 : value and bounds were set to incompatible values

#### **Relax Bounds**

- m.v3.setlb(-5)
- m.v5.setub(10)

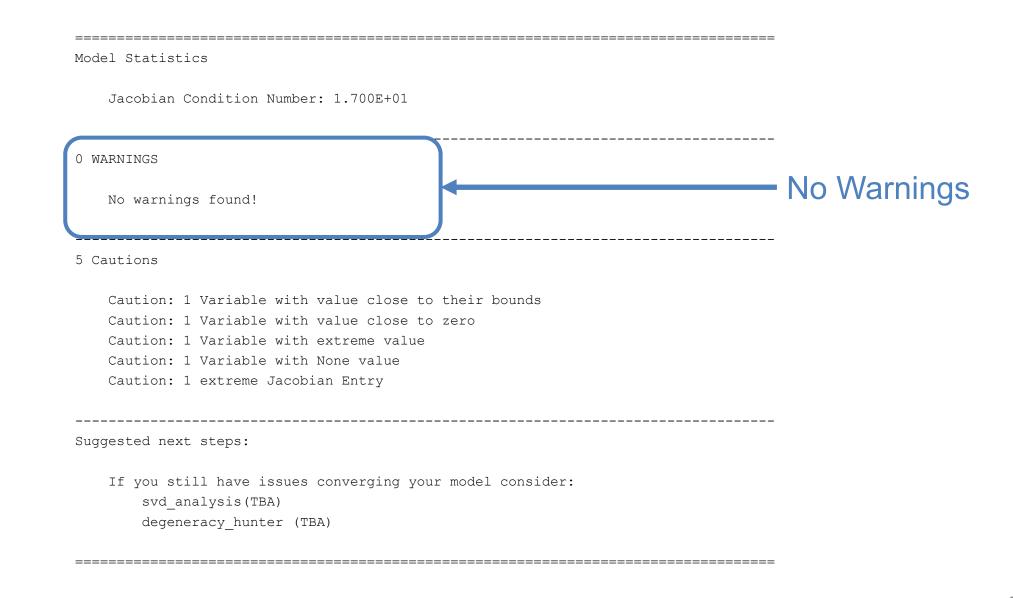


# Try to Solve Again...

iter objective inf pr inf du lg(mu) ||d|| lg(rg) alpha du alpha pr ls

- 0.000000e+00 6.67e-01 0.00e+00 -1.0 0.00e+00 0
- 0.0000000e+00 6.66e-03 2.97e+00 -1.0 2.00e+00 7.17e-01 9.90e-01h 1
- 2 0.0000000e+00 6.27e-05 9.38e+00 -1.0 2.00e-02 - 1.00e+00 9.91e-01h
- 3 0.0000000e+00 8.88e-16 1.13e-12 -1.0 1.88e-04 - 1.00e+00 1.00e+00h

Number of Iterations....: 3


EXIT: Optimal Solution Found.

#### An Optimal Solution **does not** mean the model is robust!



- 0.00e+00 0.00e+00 0
- 1
- 1
- 1

#### **Numerical Issues Again**





#### **Numerical Issues Again**

| <br> | <br> | <br> |
|------|------|------|

Model Statistics

Jacobian Condition Number: 1.700E+01

| <br>5 Cautions                   |                                                                                                                                                                               |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caution:<br>Caution:<br>Caution: | 1 Variable with value close to their bounds<br>1 Variable with value close to zero<br>1 Variable with extreme value<br>1 Variable with None value<br>1 extreme Jacobian Entry |

\_\_\_\_\_

Suggested next steps:

If you still have issues converging your model consider: svd\_analysis(TBA) degeneracy\_hunter (TBA)



#### **Variables with Extreme Values**

dt.display\_variables\_with\_extreme\_values()

The following variable(s) have extreme values:

v7: 4.9999999999999945e-08

Scaling Issue: v7 has very small value and is close to lower bound of 0

**Solution:** scale v7 and associated constraint c4



# Try to Solve Again...

iter objective inf\_pr inf\_du lg(mu) ||d|| lg(rg) alpha\_du alpha\_pr ls 0 0.0000000e+00 1.40e+01 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 0.000000e+00 3.55e-15 4.88e+02 -1.0 6.00e+00 - 2.02e-03 1.00e+00f 1

Number of Iterations....: 1

EXIT: Optimal Solution Found.



## Conclusions

- Writing good models is still hard, but...
- Diagnostics Toolbox helps you find issues
  - Expert help at your fingertips
  - Reduces time, effort and expertise required to debug models
- For more information, see the poster



#### All You Need to Remember...

# from idaes.core.util import DiagnosticsToolbox

dt = DiagnosticsToolbox(m)

# dt.report\_structural\_issues()

https://idaes-pse.readthedocs.io/en/stable/explanations/model\_diagnostics/index.html





# **IDAES** Visualization

Dan Gunter, Sheng Pang, Sarah Poon, Cody O'Donnell Stakeholder Summit 2023







# **Visualization is important**



IDAES models are built in Python code, but..



Complex models are routinely diagrammed

Validation: are the connections correct Communication to others (and yourself)

Diagrams provide context for model properties

Stream values, unit values, constraints, structure

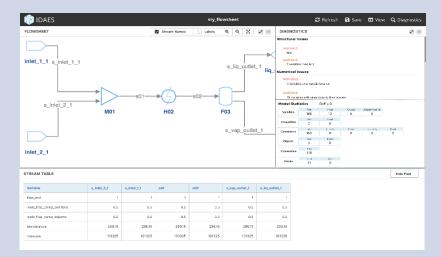


Visualization is much more than diagrams (of course)

Plots of results, visual diagnostics, etc.



### **IDAES** has a visualization tool "built in"


</>

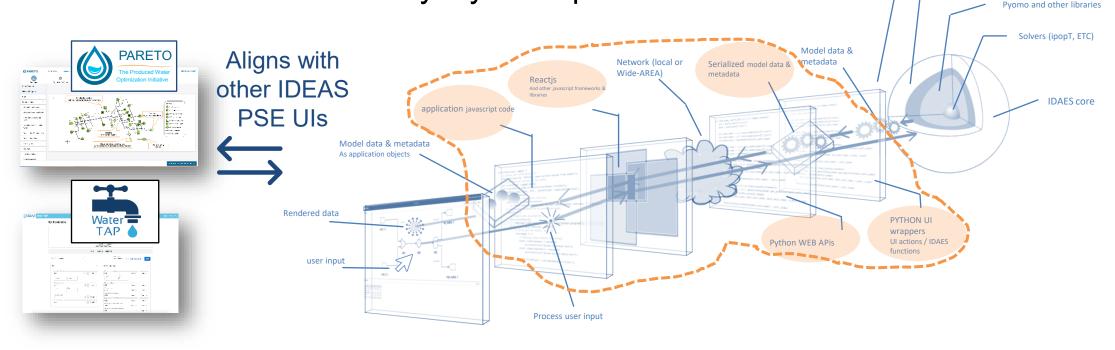
With the addition of one line of code to your Jupyter Notebook or script..

model = build\_model()
model.visualize("my\_flowsheet")



..you get a web-based UI that automatically displays a model diagram and a stream table..





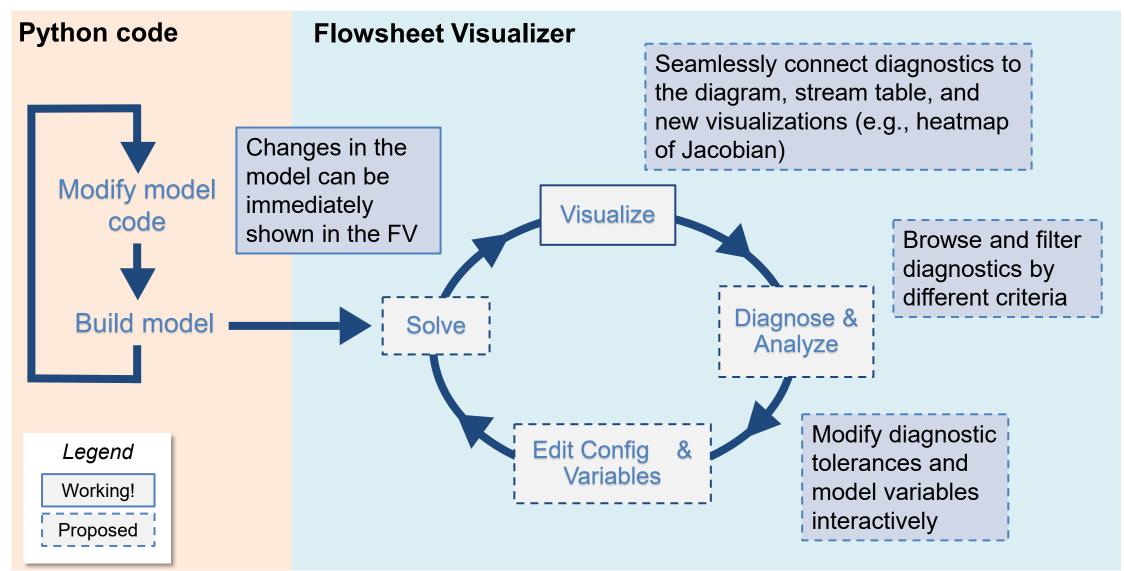

..and retains a connection to the model so you can interact with it.



# Latest changes for the FV

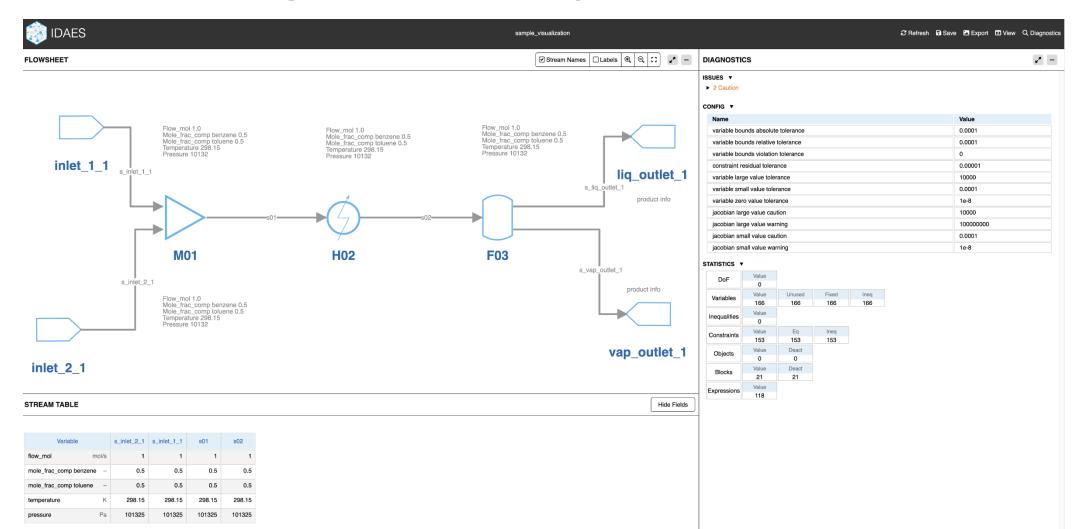
- Important refactor to "normalize" the architecture
- Re-do UI in ReactJS many layout improvements




We are preparing the way for incorporating new, interactive elements, starting with: IDAES Diagnostics



**IDAES Python** APIs


**IDAES** model classes

# **Diagnostics and Plan/Do/Evaluate Cycle**





# **Diagnostics Prototype Screenshot**





## **Diagnostics Prototype Screenshot Detail**

| IAGNOSTICS                          | **       |
|-------------------------------------|----------|
| SUES 🔻                              |          |
| 2 Caution                           |          |
| ONFIG 🔻                             |          |
| Name                                | Value    |
| variable bounds absolute tolerance  | 0.0001   |
| variable bounds relative tolerance  | 0.0001   |
| variable bounds violation tolerance | 0        |
| constraint residual tolerance       | 0.00001  |
| variable large value tolerance      | 10000    |
| variable small value tolerance      | 0.0001   |
| variable zero value tolerance       | 1e-8     |
| jacobian large value caution        | 10000    |
| jacobian large value warning        | 10000000 |
| jacobian small value caution        | 0.0001   |
| jacobian small value warning        | 1e-8     |

#### STATISTICS **v**

| DoF          | Value |        |       |      |
|--------------|-------|--------|-------|------|
|              | 0     |        |       |      |
| Variables    | Value | Unused | Fixed | Ineq |
| variables    | 166   | 166    | 166   | 166  |
| Inequalities | Value |        |       |      |
| inequalities | 0     |        |       |      |
| Constraints  | Value | Eq     | Ineq  |      |
| Constraints  | 153   | 153    | 153   |      |
| Objects      | Value | Deact  |       |      |
|              | 0     | 0      |       |      |
| Blocks       | Value | Deact  |       |      |
| DIOCKS       | 21    | 21     |       |      |
| Expressions  | Value |        |       |      |
|              | 118   |        |       |      |



#### **Browse to view cautions**

| DIAGNOSTIC                     | S             |                  |       |      |        |       |          |  |
|--------------------------------|---------------|------------------|-------|------|--------|-------|----------|--|
| ► extre ▼ Caution 2:           | me_values     | lose to their bo |       |      |        |       |          |  |
| CONFIG V                       |               |                  |       |      |        |       |          |  |
| Name                           |               |                  |       |      |        |       | Value    |  |
| variable bou                   |               |                  |       |      |        |       | 0.0001   |  |
| variable bou                   |               |                  |       |      |        |       | 0.0001   |  |
| variable bou                   | nds violation | n tolerance      |       |      |        |       | 0        |  |
| constraint re                  | sidual tolera | ance             |       |      |        |       | 0.00001  |  |
| variable large                 | e value tole  | rance            |       |      |        |       | 10000    |  |
| variable small value tolerance |               |                  |       |      | 0.0001 |       |          |  |
| variable zero                  | value toler   | ance             |       |      |        |       | 1e-8     |  |
| jacobian large value caution   |               |                  |       |      |        | 10000 |          |  |
| jacobian large value warning   |               |                  |       |      |        |       | 10000000 |  |
| jacobian sma                   | all value cau | ution            |       |      |        |       | 0.0001   |  |
| jacobian small value warning   |               |                  |       |      |        |       | 1e-8     |  |
| STATISTICS V                   |               |                  |       |      |        |       |          |  |
| DoF                            | Value<br>0    |                  |       |      |        |       |          |  |
| Variables                      | Value         | Unused           | Fixed | Ineq |        |       |          |  |
|                                | 166           | 166              | 166   | 166  | ]      |       |          |  |
| Inequalities                   | Value<br>0    |                  |       |      |        |       |          |  |
|                                | Value         | Eq               | Ineq  |      |        |       |          |  |
| Constraints                    | 153           | 153              | 153   |      |        |       |          |  |
| Objects                        | Value         | Deact            |       |      |        |       |          |  |
| 00,0010                        | 0             | 0                |       |      |        |       |          |  |
| Blocks                         | Value         | Deact            |       |      |        |       |          |  |

Value

118

Expressions

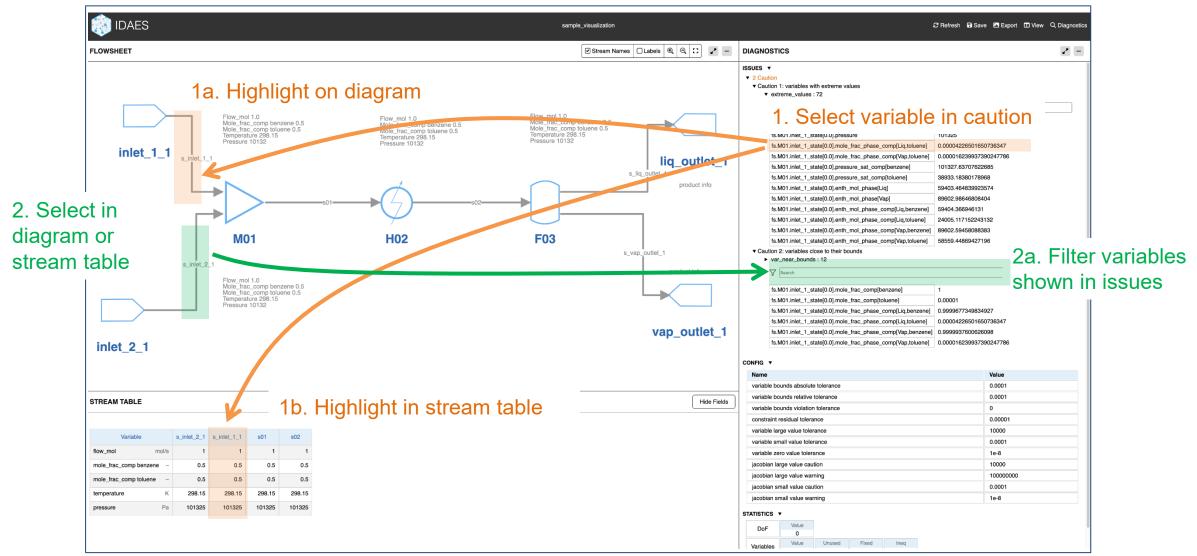


#### View variables with "extreme values"

| ES ▼                                                        |                         |
|-------------------------------------------------------------|-------------------------|
| Caution                                                     |                         |
| Caution 1: variables with extreme values                    |                         |
| ▼ extreme_values : 72                                       |                         |
| ∑ Search                                                    |                         |
| fs.M01.minimum_pressure[0.0,1]                              | 101324.999999999999     |
| fs.M01.minimum_pressure[0.0,2]                              | 101324.99999999997      |
| fs.M01.inlet_1_state[0.0].mole_frac_comp[toluene]           | 0.00001                 |
| fs.M01.inlet_1_state[0.0].pressure                          | 101325                  |
| fs.M01.inlet_2_state[0.0].mole_frac_comp[benzene]           | 0.00001                 |
| fs.M01.inlet_2_state[0.0].pressure                          | 130000                  |
| fs.M01.mixed_state[0.0].pressure                            | 101324.99999999997      |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Liq,toluene] | 0.00004226501650736347  |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Vap,toluene] | 0.000016239937390247786 |
| fs.M01.inlet_1_state[0.0].pressure_sat_comp[benzene]        | 101327.63707622685      |
| fs.M01.inlet_1_state[0.0].pressure_sat_comp[toluene]        | 38933.18380178968       |
| fs.M01.inlet_1_state[0.0].enth_mol_phase[Liq]               | 59403.464839923574      |
| fs.M01.inlet_1_state[0.0].enth_mol_phase[Vap]               | 89602.98646808404       |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Liq,benzene]  | 59404.366946131         |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Liq,toluene]  | 24005.117152243132      |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Vap,benzene]  | 89602.59458088383       |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Vap,toluene]  | 58559.44869427196       |
| fs.M01.inlet_2_state[0.0].mole_frac_phase_comp[Liq,benzene] | 0.000018948688821340677 |
| fs.M01.inlet_2_state[0.0].mole_frac_phase_comp[Vap,benzene] | 0.00004334161298390463  |
| fs.M01.inlet_2_state[0.0].pressure_sat_comp[benzene]        | 297350.9006893184       |
| fs.M01.inlet_2_state[0.0].pressure_sat_comp[toluene]        | 129996.82889148161      |
| fs.M01.inlet_2_state[0.0].enth_mol_phase[Liq]               | 25813.44309761046       |
| fs.M01.inlet_2_state[0.0].enth_mol_phase[Vap]               | 59876.807741757904      |
| fs.M01.inlet_2_state[0.0].enth_mol_phase_comp[Liq,benzene]  | 60968.170946131         |
| fs.M01.inlet_2_state[0.0].enth_mol_phase_comp[Liq,toluene]  | 25812.518818909797      |
| fs.M01.inlet_2_state[0.0].enth_mol_phase_comp[Vap,benzene]  | 90653.83510796717       |
| fs.M01.inlet_2_state[0.0].enth_mol_phase_comp[Vap,toluene]  | 59874.87498323029       |
| fs.M01.mixed_state[0.0].pressure_sat_comp[benzene]          | 156860.8353206145       |
| fs.M01.mixed_state[0.0].pressure_sat_comp[toluene]          | 63534.71863733716       |
| fs.M01.mixed_state[0.0].enth_mol_phase[Liq]                 | 38039.7329520597        |
| fs.M01.mixed_state[0.0].enth_mol_phase[Vap]                 | 77818.48958992377       |
| fs.M01.mixed_state[0.0].enth_mol_phase_comp[Liq,benzene]    | 59130.24754889732       |
| fs.M01.mixed_state[0.0].enth_mol_phase_comp[Liq,toluene]    | 23688.342072640477      |
| fs.M01.mixed_state[0.0].enth_mol_phase_comp[Vap,benzene]    | 89419.03516967919       |
| fe M01 mixed state[0.0] onth mol phase comp[Vap toluono]    | 59320 53040320868       |

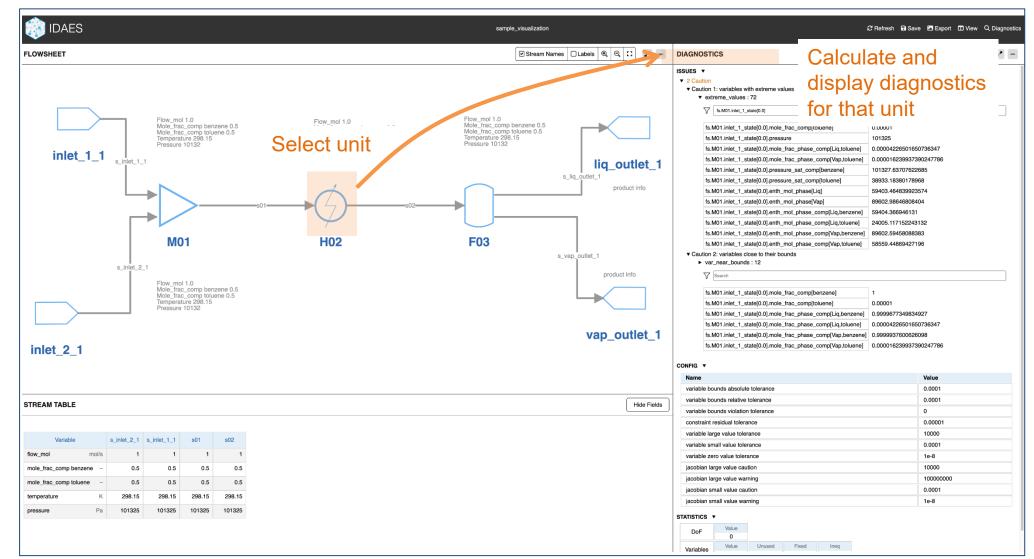


## Filter variables by name (etc.)


| DIAGNOSTICS                                                    | 2 -                     |
|----------------------------------------------------------------|-------------------------|
| ISSUES V                                                       |                         |
| ▼ 2 Caution                                                    |                         |
| ▼ Caution 1: variables with extreme values                     |                         |
| ▼ extreme_values : 72                                          |                         |
| fs.M01.inlet_1_state[0.0]                                      |                         |
| fs.M01.inlet_1_state[0.0].mole_frac_comp[toluene]              | 0.00001                 |
| fs.M01.inlet_1_state[0.0].pressure                             | 101325                  |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Liq,toluene]    | 0.00004226501650736347  |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Vap,toluene]    | 0.000016239937390247786 |
| fs.M01.inlet_1_state[0.0].pressure_sat_comp[benzene]           | 101327.63707622685      |
| fs.M01.inlet_1_state[0.0].pressure_sat_comp[toluene]           | 38933.18380178968       |
| fs.M01.inlet_1_state[0.0].enth_mol_phase[Liq]                  | 59403.464839923574      |
| fs.M01.inlet_1_state[0.0].enth_mol_phase[Vap]                  | 89602.98646808404       |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Liq,benzene]     | 59404.366946131         |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Liq,toluene]     | 24005.117152243132      |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Vap,benzene      | 89602.59458088383       |
| fs.M01.inlet_1_state[0.0].enth_mol_phase_comp[Vap,toluene]     | 58559.44869427196       |
| <ul> <li>Caution 2: variables close to their bounds</li> </ul> |                         |
| var_near_bounds : 12                                           |                         |
| 𝕎 Search                                                       |                         |
| fs.M01.inlet_1_state[0.0].mole_frac_comp[benzene]              | 1                       |
| fs.M01.inlet_1_state[0.0].mole_frac_comp[toluene]              | 0.00001                 |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Liq,benzene]    | 0.9999677349834927      |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Liq,toluene]    | 0.00004226501650736347  |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Vap,benzene     | 0.9999937600626098      |
| fs.M01.inlet_1_state[0.0].mole_frac_phase_comp[Vap,toluene]    | 0.000016239937390247786 |
|                                                                |                         |
| CONFIG V                                                       |                         |
| Name                                                           | Value                   |
| variable bounds absolute tolerance                             | 0.0001                  |

variable bounds relative tolerance

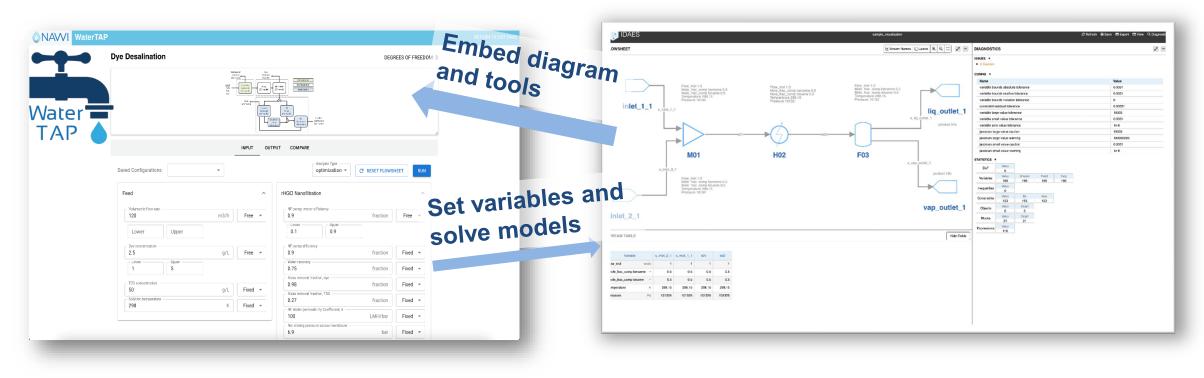
0.0001




#### **Advanced interactive explorations**






#### **Advanced interactive explorations (more..)**





# Integration with other PSE projects

- All the capabilities of the Flowsheet Visualizer can be potentially embedded into other Web UIs
- Capabilities being developed in e.g. WaterTAP can be "ported" to the FV
- Beginnings of a PSE UI "ecosystem"..?





# **Summary**



The Flowsheet Visualizer (FV) can easily visualize IDAES models today



Interactive access to IDAES Diagnostics Toolkit is being actively added



This will make the FV a more useful tool across IDAES PSE



# Please come talk to us! We want your feedback



#### Dan Gunter, team lead



Sheng Pang, IDAES UI developer



Sarah Poon, User Experience (UX)



Mike Pesce, UI developer WaterTAP, PARETO



Cody O'Donnell, IDAS UI designer (emeritus)



## **Acknowledgements**

The IDAES team gratefully acknowledges support from the U.S. DOE's Office of Fossil Energy and Carbon Management through the Simulation-Based Engineering/Crosscutting Research Program.

**National Energy Technology Laboratory**: David Miller, Tony Burgard, John Eslick, Andrew Lee, Miguel Zamarripa, Jinliang Ma, Dale Keairns, Jaffer Ghouse, Ben Omell, Chinedu Okoli, Richard Newby, Arun Iyengar, Anca Ostace, Steve Zitney, Anuja Deshpande, Alex Noring, Naresh Susarla, Radhakrishna Gooty, Doug Allen, Ryan Hughes, Andres Calderon, Brandon Paul, Adam Atia, John Brewer, Nadejda Victor, Maojian Wang, Peng Liu

Sandia National Laboratories: John Siirola, Bethany Nicholson, Michael Bynum, Jordan Jalving, Emma Johnson, Katherine Klise, Shawn Martin, Miranda Mundt, Edna Soraya Rawlings, Kyle Skolfield

**Lawrence Berkeley National Laboratory**: Deb Agarwal, **Dan Gunter**, Keith Beattie, John Shinn, Hamdy Elgammal, Joshua Boverhof, Karen Whitenack, Oluwamayowa Amusat, **Sarah Poon** 

**Carnegie Mellon University**: Larry Biegler, Chrysanthos Gounaris, Ignacio Grossmann, Carl Laird, John Eason, Owais Sarwar, Natalie Isenberg, Chris Hanselman, Marissa Engle, Qi Chen, Cristiana Lara, Robert Parker, Ben Sauk, Vibhav Dabadghao, Can Li, David Molina Thierry, Mingrui Li, Seolhee Cho, Georgia Stinchfield, Jason Sherman

West Virginia University: Debangsu Bhattacharyya, Paul Akula, Quang-Minh Le, Nishant Giridhar, Matthew Alastanos

University of Notre Dame: Alexander Dowling, Xian Gao, Nicole Cortes

Georgia Tech: Nick Sahinidis, Yijiang Li, Selin Bayramoglu



**Disclaimer:** This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. The Lawrence Berkeley National Laboratory (LBNL) is managed and operated by the University of California (UC) under U.S. Department of Energy Contract No. DE-AC02-05CH11231. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

