

Carbon Capture Simulation for Industry Impact (CCSI²)

Technical Risk Reduction: Sequential Design of Experiments and Uncertainty Quantification

Abby Nachtsheim

Advanced PSE+ Stakeholder Summit

LA-UR-23-29857

October 12, 2023

Today's Plan

- Does the data collection approach matter? (Yes!)
- Uncertainty Quantification (UQ)
 - What, why, how?
- Sequential Design of Experiments (SDoE) and UQ
- UQ + SDoE Illustration

What is Design of Experiments (DoE)?

- Mathematical strategy for selecting input combinations
 - Estimate output (computer experiment)
 - Operate system (physical experiment)
- Series of these experimental runs/tests forms experiment
 - Purposeful changes to inputs of process or system
 - Identify the reasons for any changes in output
- A well-designed experiment is critical
 - Results and conclusions depend on data collection approach

Why Use Design of Experiments?

- Extract maximum information with a fixed budget
 - Maximize performance, minimize risk
 - Produces exceptionally high-quality data
- Saved 2 years and \$2-3M off pilot testing
- Proven track record from past applications
 - Over 25% reduction in model uncertainty
 - CO₂ Capture percentage within 3-6% with 95% confidence

Design of Experiments not the same as One-Factor-at-a-Time

- OFAAT strategy:
 - Change only one input (factor) at a time
 - Hold all others constant
- Inefficient use of resources
- Cannot identify interactions
 - Effect of one factor changes
 when another factor changes
 - Finding optimal operating conditions is unlikely

Design of Experiments not the same as One-Factor-at-a-Time

- OFAAT strategy:
 - Change only one input (factor) at a time
 - Hold all others constant
- Inefficient use of resources
- Cannot identify interactions
 - Effect of one factor changes
 when another factor changes
 - Finding optimal operating conditions is unlikely

Design of Experiments not the same as One-Factor-at-a-Time

- OFAAT strategy:
 - Change only one input (factor) at a time
 - Hold all others constant
- Inefficient use of resources
- Cannot identify interactions
- Not randomized
 - Changing conditions can negatively affect the results

DoE Avoids These Drawbacks – Is Always More Efficient

X3

Uses 20 runs

Each uses 10 runs

(More detail on quantitative advantages of DoE in a few slides)

What Is DoE Used For?

Development

- Evaluate and compare system configurations
- Evaluate material alternatives
- Determine parameter settings that work well under variable field conditions
- Determine parameters that impact product performance

Improvement

- Reduce variability
- Obtain closer conformance to target requirements
- Reduce development time
- Reduce risk

How?

Development

- Evaluate and compare system configurations
- Evaluate material alternatives
- Determine parameter settings that work well under variable field conditions
- Determine parameters that impact product performance

Improvement

- Reduce variability
- Obtain closer conformance to target requirements
- Reduce development time
- Reduce risk

Strategic data collection + model estimation and refinement

All Models Contain Some Level of Uncertainty

- Form of the model, values of model parameters, experimental data used
- Need to characterize this uncertainty
 - Understand
 - Interpret results appropriately
- Characterization allows us to target sources of uncertainty to reduce uncertainty; improve
 - Models
 - Results
 - Understanding

Uncertainty Quantification (UQ)

- Uncertainty Quantification (UQ): collection of statistical methods to characterize, estimate, understand model uncertainty
- CCSI² UQ Toolset

contains robust set of analysis and visualization tools for characterizing impact on a system

- Visualize a common example:
 - Prediction intervals

Uncertainty Quantification (UQ)

- Uncertainty Quantification (UQ): collection of statistical methods to characterize, estimate, understand model uncertainty
- CCSI² UQ Toolset

contains robust set of analysis and visualization tools for characterizing impact on a system

- Visualize a common example:
 - Prediction intervals

Uncertainty Quantification (UQ)

- Uncertainty Quantification (UQ): collection of statistical methods to characterize, estimate, understand model uncertainty
- CCSI² UQ Toolset

contains robust set of analysis and visualization tools for characterizing impact on a system

- Visualize a common example:
 - Prediction intervals

Sequential DoE (SDoE)

SDoE: Directly incorporate knowledge learned in previous stages Result: Strategic data collection across multiple stages, reduce risk

Feasibility study	Exploration of input space	Model building / refinement	Optimization	Confirmation
しし				
Is it possible to collect quality data?	Understand basic relationship between inputs	Verify that the model captures patterns	Focus on region of maximum interest	Verify results for production or operational use
Proof of concept	and responses	Add data for better model parameter estimation or prediction	Close to most desirable operation conditions	Ability to reproduce results

Success Stories: MTR Field Test at TCM

- CCSI² supported Membrane Technology and Research engineering-scale advanced membrane field test at the Technology Centre Mongstad (TCM) (DE-FE0031591)
- CCSI² Team leveraged UQ and SDoE tools to make the most of the experimental budget – Learn as we go, increase efficacy
- Primary objective: **Optimization**

Successful completion of field test with goals met, despite delays in testing schedule due to MTR equipment

Success Stories: RTI Test Campaign at TCM

- CCSI² supported Research Triangle Institute test campaign for NAS solvent system at TCM
- RTI interested in two sets of conditions
 - Gas-fired combined heat and power (CHP)
 - Residual fluidized catalytic cracker (RFCC) flue gas sources
- CCSI² contributed 2 separate series of designs ranging in size to meet objective while accounting for flexibility in schedule
- Leveraged SDoE to guide test campaign
 - Focused on demonstrating high levels of CO2 capture with low solvent emissions and regeneration energy requirement

Range of strategies provides flexibility

Space-filling designs

- Relationship between inputs and response(s) of interest not well understood
- Good precision for predicting new results at any new location

Model-based designs:

- Can specify correct form for model of interest to characterize relationship between inputs and response(s)
- Relationship can be well approximated by a low-order polynomial

- 1. Uniform Space-Filling (USF)
 - Design points evenly spread throughout space of interest
 - Exploration

2. Non-Uniform Space-Filling (NUSF)

- Design points still spread out
- Emphasize some regions more than others
- Developed to meet needs of CCSI² applications
- Uncertainty Reduction

2. Non-Uniform Space-Filling (NUSF)

- Design points still spread out
- Emphasize some regions more than others
- Developed to meet needs of CCSI² applications
- Uncertainty Reduction

3. Input Response Space-Filling (IRSF)

- Used when information is known about likely output values
- Select design points likely to results in good distribution of output values
- Balance with good space-filling properties in input space

CCSI² Empirical Model-Based Capabilities

Often used when relationship between inputs and response can be well approximated by a low-order polynomial

- What inputs have biggest influence on output?
 - Parameter estimation
- What input settings lead to desired output value?
 - Response prediction
- Good choice for initial exploration
 - Refine experimental scope
 - Process model under development

CCSI²: SDoE Toolset; Experts to talk to and work with

CCSI² SDoE Capabilities

- Design ordering algorithm:
 - Orders the experimental runs
 - Improves efficiency of implementation
- Graphical tools for design evaluation and comparison
 - Facilitates comparison among design options

Ordered

Unordered

- Allows users to quickly assess design coverage and properties
- CCSI²: SDoE Toolset; Experts to talk to and work with

SDoE/UQ Illustration: MEA Absorption Column Model

- Primary components:
 - Thermodynamic model
 - Mass transfer
- Model is evaluation model but provides effective demonstration
- 5 Inputs:
 - Liquid flowrate
 - Gas flowrate
 - Lean loading
 - MEA weight fraction
 - CO2 mole fraction in the vapor
- Output: Percent CO2 captured

Reduce Uncertainty in MEA Absorption Column Model

Use UQ + SDoE to Reduce Uncertainty (and associated risk)

Number of experimental runs allocated: 30

Approach: SDoE with 3 phases

- 1. Uniform Space-Filling Design: 10 runs Initial exploration/verification
 - Calibrate model and obtain updated estimates of predicted uncertainty (via UQ)

*Using simulated data for this illustration

Use UQ + SDoE to Reduce Uncertainty (and associated risk)

Number of experimental runs allocated: 30

Approach: SDoE with 3 phases

2. Non-Uniform Space-Filling Design: 10 runs

Target areas of higher uncertainty

- Calibrate and obtain new predicted uncertainty
- 3. Non-Uniform Space-Filling Design: 10 runs Target refined areas of uncertainty

Parallel with 2D example

UQ + SDoE Notably Reduces Uncertainty in MEA Absorption Column Model

UQ + SDoE Reduces Uncertainty; Reduces Risk

Find Desirable Settings for MEA Absorption Column Model

What input settings lead to maximum percent CO2 capture? Demonstrate using empirical model-based designs (low-order polynomial approximation)

Compare to OFAAT

17-run empirical model-based DoE

30-run OFAAT

30-run OFAAT: Model predicts best settings will lead to 69.3% CO2 capture

30-run OFAAT: Model predicts best settings will lead to 69.3% CO2 capture with prediction interval (66.7, 71.8)

30-run OFAAT: Model predicts best settings will lead to 69.3% CO2 capture with prediction interval (66.7, 71.8)

36

17-run empirical model-based DoE: Model predicts best settings will lead to 81.3% CO2 capture

17-run empirical model-based DoE: Model predicts best settings will lead to 81.3% CO2 capture with prediction interval (78.8, 83.8)

17-run empirical model-based DoE: Model predicts best settings will lead to 81.3% CO2 capture with prediction interval (78.8, 83.8)

What happened with OFAAT?

- There was an interaction effect!
 - Liquid flowrate-lean loading interaction
 - OFAAT cannot detect
- Result: OFAAT suggested incorrect setting for liquid flowrate, leading to low %CO2 capture
 - OFAAT: L = 2.73
 - DoE (correct): L = 1.5
- DoE: identify true range of optimum and best settings

DoE reduces risk of incomplete answers, uses fewer resources, gets better results

40

Next – Science-Based Design of Experiments

Extends ideas from DoE to science-based models

Wrap-Up

- Data collection method matters
 - Use statistical DoE
 - Strategic data collection to meet experimental objectives
- Use UQ to understand uncertainty
 - All models contain some uncertainty
 - Can't improve it without first knowing about it
- SDoE leverages UQ for targeted data collection
 - Directly incorporates knowledge of uncertainty to target, reduce
- UQ + SDoE: Value-add
 - Efficient use of resources
 - Increases efficacy
 - Reduces risk

For more information

anachtsheim@lanl.gov

Lawrence Livermore

₹OAK RIDGE National Laboratory West Virginia University.

