Project PARETO – DOE's Produced Water Optimization Initiative

Pipeline Hydraulics

Tysons Corner, VA

Refresher: Project Premise & Capabilities

Premise: Develop a free and trusted software program ("PARETO") to help organizations transport, treat, store, inject and/or reuse produced water from onshore oil & gas operations.

- Supports infrastructure build-out decisions
 - E.g., pipelines, storage, injection, treatment, etc.
- Ensures mass balances across the network
 - Flow balance at each node in the facility
- Ensures feasibility of operational constraints
 - E.g., capacity limitations, expansion restrictions, etc.
- Facilitates scenario analysis
 - "what-if" analysis for various operational or investment decisions

PARETO is designed to help practitioners solve practical problems in PW management.

Motivation: Operational & Strategic Challenges

- Preventing violations of pressure bounds
 - Elevation changes and frictional losses cause pressure changes
 - Pipeline design influences operating pressure bounds
 - Managing flows and pressures with pumps and valves
- Integrating new wells with existing network
 - High volume and pressure from flowback of new wells
 - Design pipelines and integration points for new wells
 - Prevent shut-off of old wells due to high flowback pressure

PARETO

PARETO is not aiming to replace rigorous hydraulics simulators. The goal is to support mid-/long- term network design decisions considering hydraulics.

PARETO & Hydraulics

PARETO The Produced Water Optimization Initiative

Motivation: feedback from the PARETO Stakeholder Board!

- Fluctuations in fluid flows and pressures
 - E.g., addition of new wells, elevation changes, etc.
- Existing tools fail to capture the design space and often fail to converge or close mass balance

Action: Incorporate a robust hydraulics module into PARETO!

- Consider elevation changes explicitly
- Ensure mass balance and network feasibility
- Factor pressure considerations into network design

The team is working towards validating & improving rigorous hydraulics implementation within PARETO.

Modeling Hydraulics in Pipelines

Q = volumetric flow (m³/s) V = velocity (m/s) P = pressure (Pa) z = elevation (m) h = head loss (m) γ = density * g (kg/m²/s) C_{HW} = Hazen-Williams constant L = Length of pipeline segment (m) d = pipeline diameter (m) Modeling hydraulics (based on energy balance)

$$\frac{V_1^2}{2g} + \frac{P_1}{\gamma} + z_1 = \frac{V_2^2}{2g} + \frac{P_2}{\gamma} + z_2 + h^{Friction} + h^{Valve} - h^{Pump}$$

 h^F

Hazen–Williams Formula

$$h^{Friction} = 10.704 \left(\frac{Q}{C_{HW}}\right)^{1.85} \left(\frac{L}{d^{4.87}}\right)^{1.85} \left(\frac{L}{d^{4.87}}\right)^{1.$$

Darcy-Weisbach Equation

$$riction = 0.5 \left(\frac{Q}{A}\right)^2 \left(\frac{\rho L f_{darcy}}{d}\right)$$

Model equation

$$P_{2} = P_{1} + (z_{1} - z_{2})\gamma - 10.704 \left(\frac{Q}{C_{HW}}\right)^{1.85} \left(\frac{L}{d^{4.87}}\right)\gamma + \Delta P_{pump} - \Delta P_{valve}$$

(assuming V^2 is relatively small)

PARETO's hydraulics module computes pressures at each node and determines the need for pumping or throttling to keep pressures within allowable limits.

Model equations

Pressure balance

$$P_{\tilde{l}t} = P_{lt} + (z_l - z_{\tilde{l}})\gamma - h_{l\tilde{l}t}^{Friction}\gamma + \Delta P_{l\tilde{l}t}^{Pump} - \Delta P_{l\tilde{l}t}^{Valve}$$

Frictional loss

Pumping cost

$$\begin{split} h_{l\tilde{l}t}^{Friction} &= 10.704 \left(\frac{Q}{C_{HW}}\right)^{1.85} \left(\frac{L}{d^{4.87}}\right) \quad \text{or,} \quad h_{l\tilde{l}t}^{Friction} = 0.5 \left(\frac{Q}{A}\right)^2 \left(\frac{\rho L f_{darcy}}{d}\right) \\ \text{(Hazen-Williams Formula)} \quad \text{(Darcy-Weisbach Equation)} \end{split}$$

Pumping installation

Pressure bounds

$$\Delta P_{l\tilde{l}t}^{Pump} \le M y_{l\tilde{l}}^{Pump}$$

$$P_l^{lower} \le P_{lt} \le P_l^{upper}$$

$$Q = \text{volumetric flow } (m^3/s)$$

$$V = \text{velocity } (m/s)$$

$$P = \text{pressure } (Pa)$$

$$z = \text{elevation } (m)$$

$$h = \text{head loss } (m)$$

$$\gamma = \text{density * g } (kg/m^2/s)$$

$$C_{HW} = \text{Hazen-Williams constant}$$

$$L = \text{Length of pipeline } (m)$$

$$d = \text{pipeline diameter } (m)$$

PARETO's hydraulics model is an option for users to select when pressure analysis is needed.

Hydraulics module caters to the varying needs of the user:

assess network operations (post-process) or design new infrastructure (co-optimize)

PARETO

The Produced Wate

PARETO's Hydraulics Module Framework

······#·Ongoing·work·is·geared·to·address·this·limitation·and·will·soon·be·updated·here.

PARETO & Hydraulics: demo using a toy case study

PARETO Motivating Example: Overview

Elevation Increases

Given:

Existing network infrastructure Potential expansion opportunities Capacities & costs Production, Flowback forecasts

Constraints:

Flow directions Available choices for treatment

Determine:

Optimal network design Flows and costs

IATIONA

NOLOGY

NERGY

· · · · · · · · · ·

BERKELEY LAB

PARETO Motivating Example: Basic Run

GROUNDWATER

PARETO Motivating Example: Hydraulics Post Process

Tech 🛛

PARETO Motivating Example: Hydraulics Post Process

GROUNDWATER

PARETO Motivating Example: Pump Failures

GROUNDWATER

Carnegie Mellon

University

ANOITAN

NOLOGY

NERGY

m

BERKELEY LAB

Georgia

le<u>ch</u> 🛛

New Information:

Pump on line PP03-N06 has failed

Determine:

Pressures at all nodes New Pump stations, if needed

Flows & Pressures are a snapshot in time

PARETO The Produced Water Optimization Initiative

- Encouraging response from industrial collaborators on hydraulics implementation
- Working on implementing the module on a new industrial case study
- PARETO's University Collaboration

- Developing advanced optimization techniques and strategies for a comprehensive analysis of hydraulics
- Time decomposition strategy for better initialization of the underlying MINLP problem
- Linearization of pressure drop correlations to enable comprehensive analysis of network hydraulics
- PARETO UI

- Team is working towards releasing hydraulics post-processing module integrated with next UI release
- Comprehensive co-optimization methods to be available by Q4

The PARETO Team

PARETO The Produced Water Optimization Initiative

NETL:

Markus Drouven Miguel Zamarripa Melody Shellman Naresh Susarla Travis Arnold Elmira Shamlou Philip Tominac Brayden Gess

LBNL:

Dan Gunter Lisa Henthorne Karen Work Brent Halldorson Keith Beattie Ludovico Bianchi Michael Pesce Sarah Poon **CMU:** Lorenz Biegler Sakshi Naik Carl Laird Daniel Ovalle Arsh Bhatia

Georgia Tech: Nick Sahinidis

Yijiang Li

We gratefully acknowledge support from the U.S. Department of Energy, Office of Fossil Energy and Carbon Management, through the Environmentally Prudent Stewardship Program.

Thank You!

For questions and comments, please contact

Markus (markus.drouven@netl.doe.gov)

Naresh (naresh.susarla@netl.doe.gov)

Miguel (miguel.zamarripa-perez@netl.doe.gov)

