Evaluating the Design \& Operation of an Electrodialysis Desalination

System

Xiangyu Bi

Lawrence Berkeley National Laboratory
Thursday, October 12, 2023

Context: electrochemical processes and WaterTAP

Advantages

Clean energy.

- Integrated physical and chemical processes.
- Competitive performance in certain cases.

Deepen insight into the system

Guide engineering design and operation

What is electrodialysis (ED)?

Goal: a cost-effective ED desalination system

Approach: model construction

X

$$
P(\mathrm{x})=P
$$

$Q C_{i}-Q C_{e}+J_{S} A=0$

Other phenomena simulated

- Potential gradients in solution, diffusion layers, and membranes. Frictional pressure.
Mass transfer mechanisms

Ions	Electrical flux	Diffusion
water Osmosis	Electro-osmosis	

Finite difference to solve 1-D ODE.
(2) Costing model: capital investment and operation cost.

- Electricity
- lon exchange membranes
- Electrodes
- Other stack materials
- Pumps
- Power supply device
$\operatorname{LCOW}\left(\left[\$ \mathrm{~m}^{-3}\right]\right)=$ total annual cost
annual product water volume

Approach: Constrained Optimization

$$
\min _{x \in \mathrm{R}^{n}} f(x) \quad \longrightarrow \min _{\mathbf{x}} \mathrm{LCOW}=f(\mathbf{x}, \mathbf{P})
$$

$$
\text { subject to }\left\{\begin{array}{ll}
c_{i}(x)=0, & i \in \mathcal{E}, \\
c_{i}(x) \geq 0, & i \in \mathcal{I},
\end{array} \longrightarrow Q C_{i}-Q C_{e}+J_{S} A=0\right.
$$

$$
J_{e}=\left(\sum_{i^{+}} t_{i^{+}}^{c x}-\sum_{i^{-}} t_{i^{-}}^{c x}\right)(\xi i(z) / F) b d z
$$

$$
J_{D}=\sum_{i}\left[P_{i}\left(n_{i}^{C}(z)-n_{i}^{D}(z)\right)\right]\left(b / \delta^{c x}\right) d z
$$

All process and costing model equations except LCOW.

Nonlinear Programming (NPL)
Interior-point filter line-search algorithm IPOPT (Interior Point OPTmizer) solver

Outcomes: minimized cost for varying treatment load

Treatment load

Feed Salinity $\left(\mathrm{g} \mathrm{L}^{-1}\right)$	$1-10$
Product Salinity $\left(\mathrm{g} \mathrm{L}^{-1}\right)$	0.5
Water Recovery	$50 \%-90 \%$

Optimizer

Var	Initial value	Bounds
Stack voltage (V)	10	$0-3000$
Cell pair number	100	$10-10000$
Cell length (m)	1.68	$0.1-10$

The contour line density suggests variation gradient.

Outcomes: itemization of cost

Low load	Material cost > power cost. Investment capital > operation cost.
High load	Power cost becomes competitively important. Operation cost becomes important.

Outcomes: contours of optimizer variables

- Voltage (V) ~ cell pair number (N).
- Cell length (L) ~ LCOW.
- Increase V and N for low salinity's higher recovery.
- Increase L for high salinity and high recovery.
- Cell length appears to be the most important designing parameter.

Outcomes: the importance of cell length vs. voltage

High voltage for high loads is a tempting intuition or "fact".

- "Increasing the extent of salt removal in ED inherently requires the application of larger voltage."

ACS EST Engg. 2021, 1, 851-864
(0) NAWI

Cell length, rather than voltage, is the costeffective solution.

- Multivariate optimization yields more accurate cost-effective design/operation.
- High loads should rely on more cell length.

Why is length critical for a cost-effective design?

- The optimized (longer) cell length operates more underneath the limiting current density, mitigating the limitation of diffusion.

Why is mitigating the diffusion limitation better?

- Larger ohmic potential of DL suggests larger resistance.
- Current efficiency =

Current used to drive ion fluxes
Total current

- $P(x)=\int_{0}^{x} u(x) i(x) b \mathrm{~d} x$

Outcomes: sensitivity of key params to optimized LCOW

Membrane metrics

Outcomes: detailed sensitivity of LCOW's response to membrane properties

Counter-current diffusion
Guidance to membrane development:

- Consider the leverage between resistance and and diffusivity.
(0) NAWI
- Our sensitivity suggests diffusivity is more dominating for LCOW.

Summary

- Major mass transfer schemes simulated to predict performance.
- TEA in categories of power, materials and supplies and of capital and operational cost.

ED

Guide
engineering design and operation

Deepen insight into the system

Guide research

- Guided research in ion exchange membrane development.
- In-depth understanding of length's importance and current use.

Future work and acknowledgement

- Opportunities to support users in research and other communities.
- Collaborating with experimental teams (NMSU) on ED pilot systems.
- Other ED functionalities
- Selective desalination.
- Bipolar membrane ED for chemical generation
- Others as needed.

NATIONAL ACCELERATOR LABORATORY

OAK
RIDGE

- This material is based upon work supported by the National Alliance for Water Innovation (NAWI), funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Industrial Efficiency \& Decarbonization Office, under Funding Opportunity Announcement Number DE-FOA0001905.
- Entire WaterTAP team
- Special thanks to
- Daniel Gunter (LBNL supervisor)
- Alexander V. Dudchenko (SLAC)
- Timothy V. Bartholomew (NETL)
- Austin Ladshaw (formerly ORNL)
- Srikanth Allu (ORNL)
- Hunter Barber (WVU)
- Adam Atia (NETL)
- Ben Knueven (NREL)
- Keith Beattie, Ludovico Bianchi (LBNL)
- Kejia Hu (LBNL)

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
(o) NAWI

