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Low salinity and high salinity waters require innovations

to reduce energy use and cost

What would the cost of HPRO be with current state of the art and future components?
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WaterTAP enables simulation of full HPRO system

WaterTAP provides standard unit models:
« Standard 1D reverse osmosis model
« Standard pump model (from IDAES)

« Turbo energy recovery device (ERD) —made by
coupling mechanical energy transfer between
two standard ERD pump devices (from IDAES)

Multi-stage build is enabled by IDAES
Model only needs to be modified to account for:

1. Pressure effect on component cost

2. Pressure effect on membrane performance
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HPRO will have to operate at pressures above 200 bar
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Pressure factors can be used to project cost increase with

pressure (CC, ,=f,*CC,)

Considered scenarios:

1. ldeal scenario

Membrane performance does not decrease with
pressure

Component costs do not increase with pressure

2. HP cost scenario
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Membrane performance in high pressure RO
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Performance scenarios help understand process
performance potential

B
o

Considered scenarios: ---- |deal scenario

== A compaction model
O Davenport (SW-30) et al.

> Wu (SWRO) et al.

1. ldeal scenario

 Membrane performance does not decrease with
pressure

oo
&)
]

0
o
]

Component costs do not increase with pressure

2. HP cost scenario

«  Membrane performance does not decrease with
pressure

N
&)
|

« Component costs increase with pressure

Water permeability (LMH/bar)
N
o

3. A compaction scenario 1.5
Membrane water permeability degrade
«  Component costs increase with pressure 1.0 -
0.5 A
00 I | I
0 100 200 300 400

Davenport, D. M. et al. Thin film composBIE%§§Mcrn§ac(pm&-pressure reverse osmosis.

Journal of Membrane Science 118268 (2020) doi:10.1016/j.memsci.2020.118268.
Y NAW' Wu, J. et al. Reverse osmosis membrane compaction and embossing at ultra-high pressure operation. 7
Desalination 537, 115875 (2022).



https://doi.org/10.1016/j.memsci.2020.118268

Performance scenarios help understand process
performance potential
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Pump costs govern HPRO LCOW and design

N-stage RO with polishing

Under ideal scenario — pumps dominate costs

Inclusion of pressure effect on component costs
increases LCOW by 25 — 40%

Membrane compaction effect can be mitigated
by changing operational mode of HPRO

Primary N-stage RO Polishing single-stage 1.
system with turbo or RO
isobaric device same design as primary 2.
_ Product
=1 Mixer 4’|Splitter | Mixer >
I I ) 3.
process
65 g/L to 70% WR
Ideal [] Primary ERD _:l B Primary stage
[] Primary membranes [0 Polish stage
B Primary pumps
[] Polish stage
[] OPEX
fA4

DPerm?ate
0SMOofiC
pressure

BlOperating
pressure

125 g/L to 50% W CAPEX
|deal

00 05 10 15 20 25 3.0 350 5 10 15

LCOW ($/m°)

ONAWI

SEC (kWh/m")

20-100
Primary last stage pressure (bar)

0 100 200 300 400




Multi-staging reduces impact of high pressures and cost

N-stage RO with polishing N-stage high pressure reverse osmosis system
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Multi-staging reduces impact of high pressures and cost

N-stage RO with polishing
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Exploring cost across broad range of conditions
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2. Including high pressure costs can nearly double

process costs for high salinity cases

3. Membrane permeability (A) and salt rejection

(B) loss increase costs by 5-10%

Changing process operation through reduced salt
rejection and multi-staging mitigates impact of
membrane compaction effects on cost

Under assumption that components, including
membranes, don’t catastrophically fail above
120 bar

12




Assumptions in component performance can conceal
value of innovation

O State of the art performance and cost
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Stochastic value of innovation identifies innovations
that will always reduce LCOW

VOI = % reduction in LCOW resulting from improving a

i )
O State of the art performance and cost single component by a %

O Improved component —»Q1% step
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WaterTAP enables analysis of emerging brine
management systems

Under assumption that components, including membranes, don’t catastrophically fail
above 120 bar:

1. Loss of membrane permeability and salt rejection for current membranes can be mitigated
through design changes and multi-staging

 Research needs to focus on developing membranes that can retain their current
performance over extended operating times (3-5 years!)

2. Multi-staging reduces operating costs by minimizing use of extreme pressure components

* Investments should be made in developing pumps and membrane modules/PVs that
operate at different pressures and have costs that scale with pressure
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Dual parametric sweeps quantify sensitivity to selected
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Dual parametric sweeps quantify sensitivity to selected
parameters
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