

Analyzing Solar Desalination With WaterTAP

Kurby Sitterley, NREL 10-12-2023

SOLAR ENERGY TECHNOLOGIES OFFICE

Funded by:

Managing highly saline streams with a high recovery ratio will require a thermal process.

Technology	Max TDS (g/L)	Energy Consumption (kWh/m³)
RO	<70	2-6
HPRO	~120	3-9
OARO COMRO CFRO	~140	6-19
FO	~200	0.8-13
MD	~350	39-67
MSF		18-29
MED		14-22

Membrane Process

 $P > \pi_F$ Highly Saline Brine

This presentation may have proprietary information and is protected from graphianklesse, (2021). doi:10.1016/j.psep.2020.12.007

Project Background

- **Objective:** build the ability to evaluate solar thermal desalination technologies for brines into WaterTAP
- SETO Metrics:
 - LCOH: \$0.02/kWh_{th}
 - LCOW: \$1.50/m³
- Case study comparison against electrified alternatives
 - Produced water, brackish water

RENEWABLE ENERGY LABORATOR

Funded by:

Project Background

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Driven by electricity

Driven by heat

This presentation may have proprietary information and is protected from public release.

Development Needs and Challenges

Maximizing resources WaterTAP = \$4M/year WaterTAP-SETO = \$300k/year

Analyzing nuances of timedependent system without time dependent model is... challenging

Funded by:

Given:

- Location
- Salinity
- Flow rate
- Technologies used

Subsystem	Design Variables	Operating Variables
Solar	X ₁	Y_{I}
Treatment	X ₂ , X ₃ , X ₄	Y ₂ , Y ₃
Storage	X5, X6	Y_4

Low Level Optimization

- Fixed: Treatment, Solar, Storage
- Optimized: None (Simulation)

Fixed: Treatment, Storage
Optimized: Solar

- Fixed: None
- Optimized: Treatment, Solar, Storage

Analysis Goals

Analysis A

• Fixed: PV, RO, Storage

• Optimized: None (Simulation)

Analysis B

Fixed: PV, RO (design)
Optimized: Storage, RO (op.)

Analysis C

Fixed: no subsystem
Optimized: PV, RO (design + op.), Storage

Funded by:

Tier 1:

- Steady-state cost optimization of water treatment
- Parameter data from PySAM (net metering)

Tier 2:

- Steady-state cost optimization of integrated system
- Steady-state surrogate from PySAM

Tier 3:

- Pseudo steady-state optimization of integrated system
- Pseudo steady-state surrogate from PySAM

Q1 2023

Q4 2023

- SAM = System Advisor Model
- Detailed performance and financial analysis for renewable energy systems

Renewable Energy Technologies:

- PV
- Battery
- Conc. Solar Power
- Fuel Cell
- Wind
- Marine Energy
- Geothermal
- Biomass
- Solar Water Heating

Tier 1: WaterTAP + PySAM Simulation

WaterTAP + SAM Integration

- Simulation
- PySAM wrapper integrated as Unit Model
- PV peak generation = RO baseline demand
- WaterTAP wants to make massive solar plants

Building WaterTAP Surrogates with PySAM

Process:

- Make simplifying assumptions
- Determine valid input variable ranges
- Run PySAM sweep across ranges 3.
- Use dataset to construct surrogate with 4. PySMO (RBF)

0.0735

Funded by:

Funded by:

Building WaterTAP Surrogates with PySAM

Solar

Storage

rotected from public release.

Simplifying Assumptions:

- One set of component designs
- Constant setpoint and return temp.
- Single location

Inputs:

- Heat rate at design conditions
- Hours of thermal storage at design

Outputs:

Annual energy produced/consumed

This presentation may ha

Solar System Capacity Hours Storage

Annual Energy Produced Annual Energy Consumed

Building WaterTAP Surrogates with PySAM

WaterTAP + Solar Energy

Time

MultiPeriod Modeling

Funded by: SOLAR ENERGY TECHNOLOGIES OFFICE

Key Features:

- Fixed RO operation
- Variable electricity pricing
- Seasonal PV sizing

Future work:

- Unfix and optimize PV system
- Part-load performance RO system

This presentation may have proprietary information and is protected from public release.

MultiPeriod PV + RO + Battery

This presentation may have proprietary information and is protected from public release.

MultiPeriod Thermal Desalination

Funded by:

Renewable Energy Models

Solar Energy:

- ✓ PV (Surrogate)
- ✓ Trough (Surrogate)
- ✓ Flat Plate Collector (Surrogate)
- ✓ Flat Plate Collector (Physical)

Additional Outputs

SOLAR ENERGY TECHNOLOGIES OFFICE

WaterTAP with

<u>Renewable</u> <u>Energy and</u> <u>Flexible</u> <u>Load</u> <u>Optimization</u>

Acknowledgements

Parthiv Kurup Mukta Hardikar Zach Binger Darice Guittet Matt Boyd

Zhuoran Zhang Vasilis Fthenakis

Adam Atia Tim Bartholomew

