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Optimally deploy a process system across decentralized sites with 
different geographical, environmental & operating requirements

Number of Plant Installations Total Plant Capacity
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B: Modular
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Variant 1 Variant 2

Process Family Design includes the benefits of both

A set of products that share one or more common “element(s)” yet target a 

variety of different market segments

Each vehicle shares a basic components

The rest is customized for a specific 
model

Product Family Design[2]

Product Family

𝑽:   Set of process variants identified by unique performance targets & feed conditions

𝑨𝒗: Set of feasible alternatives (i.e. combination of designs 𝒅𝒄,𝒍) for a variant 𝐯 ∈ 𝑽

+ +

alternative for 𝑣

𝑪:   Set of unit module types considered for shared design for all variants in the process family

+ +

NOT alternative for 𝑣



𝑙∈𝐿𝑐

𝑧𝑐,𝑙 ≤ 𝑵𝒄
s.t. ∀ 𝑐 ∈ 𝐶



𝑎∈𝐴𝑣

𝑥𝑣,𝑎 = 1 ∀ 𝑣 ∈ 𝑉

𝑥𝑣,𝑎 ≤ 𝑧𝑐,𝑙
∀ 𝑣 ∈ 𝑉, 𝑎 ∈ 𝐴𝑣 , 

𝑐, 𝑙 ∈ 𝑄𝑎

0 ≤ 𝑥𝑣,𝑎 ≤ 1 ∀ 𝑣 ∈ 𝑉, 𝑎 ∈ 𝐴𝑣

𝑧𝑐,𝑠 ∈ {0,1} ∀ 𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿𝑐

Select units for manufacture

Select 1 alternative

Alternative must be manufactured

At optimality, the solution will converge to 
binary under mild assumptions

ReVelle, Charles S., and Ralph W. Swain. "Central facilities location." Geographical analysis 2.1 (1970): 30-42.

Common Units

Minimize the total weighted cost of all 
variants in the process family



𝑣∈𝑉

𝑤𝑣 

𝑎∈𝐴𝑣

𝑝𝑣,𝑎𝑥𝑣,𝑎min.

✓ Reduced manufacturing costs 
o Economies of numbers (modular concepts at unit level)

o Economies of scale (customization to design range)

✓ Multiple scalable optimization formulations

✓ (2) reduces data requirement[5]

✓ (3) adds cost savings & determines size of platform.

✓ (4) demonstrates decomposability of larger problems.

❑ Perform a rigorous costing analysis for each design approach.

❑ Incorporate Econ. Of Num. and decomposition for ML Surrogates.
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min. 

𝑣∈𝑉

𝑤𝑣𝑝𝑣

𝑝𝑣 = 𝑔𝑣
𝑝

𝐫𝑣, 𝐝𝑣,1, … , 𝐝𝑣,𝑚s.t. ∀ 𝑣 ∈ 𝑉

𝑖𝑣 = 𝑔𝑣
𝑖 𝐫𝑣, 𝐝𝑣,1, … , 𝐝𝑣,𝑚 ∀ 𝑣 ∈ 𝑉

𝑌𝑣,𝑐,𝑙

𝐝𝑣,𝑐 = መ𝐝𝑐,𝑙

⋁

𝑙 ∈ 𝐿𝑐
∀ 𝑣 ∈ V, 𝑐 ∈ 𝐶

መ𝐝𝑐
LB ≤ መ𝐝𝑐,𝑙 ≤ መ𝐝𝑐

UB ∀ 𝑐 ∈ C, 𝑙 ∈ 𝐿𝑐

𝐢𝑣
LB ≤ 𝐢𝑣 ≤ 𝐢𝑣

UB ∀ 𝑣 ∈ 𝑉

𝑌𝑣,𝑐,𝑙 ∈ {True, False} ∀ 𝑣 ∈ V, 𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿𝑐

መ𝐝𝑐,𝑙−1 ≤ መ𝐝𝑐,𝑙 ∀ c ∈ 𝐶, 𝑙 ∈ 𝐿𝑐: 𝑙 > 1

Cost surrogate

Performance surrogate

Assignment of unit designs

Design boundaries

Performance boundaries

(2) ML Surrogates[4]

Reduced data set Train PWL performance & cost surrogate
Import MIP-represented PWL 

surrogate into formulation

(1) Discretization[4]

Product Platform

Product Variant
model cars = [a,b,c,d,e]

Product
model car

a b c d e

Common Module Design
designs = [I., II.]

Common Module Type
steering wheel

I. II.

Advances
(3) Discretized +

Economies of Numbers[5,6]

(4) Discretized + 

Decomposition[7]

Carbon Capture
Monoethanolamine (MEA)

(2) ML Surrogates[5]

(3) Discretized + Econ. of Num.

(4) Discretized + Decomposition

Ordering constraints

Formulation Comments

1) Diam. of the Absorber
2) Diam. of the Regenerator

𝑐 = 𝒂𝒃𝒔

𝑐 = 𝒓𝒆𝒈

𝐶 = [𝒂𝒃𝒔, 𝒓𝒆𝒈]

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.1)

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

Objective

(1.2) requires us to specify size of 
the platform a priori.

Challenge

Approach

More variants & candidate designs lead to 
large-scale problems.

Challenge

Approach

Process Family

Process Platform

a b c d e

Process Variant
HVAC systems = [a,b,c,d,e]

Process
Common Unit Module Type

[evaporator, compressor]

I. II.

III. IV. V.

𝑚 ∈ 𝑀 𝑢 ∈ 𝑈 𝑐 ∈ 𝐶

Unique Unit Module Type
[condenser, valve]

Unit Module Types

Common Unit Module Design
evaporator = [I., II.]

compressor = [III., IV., V.]
Include EoN savings within formulation. Decompose by variant; exploit similar 

structure exhibited by stochastic programs

Used mpi-sppy [7] to solve using Progressive Hedging in parallel

1st stage
𝑧𝑐,𝑙

2nd stage 
𝑥𝑣,𝑎

𝑣 ∈ 𝑉Num. manufactured units
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𝑦 = 𝑥−𝑏

Adapted Gazzaneo et al.’s (2022) piece-wise learning curve to 
include a “smooth” asymptotic behavior.

Learning Curve

𝒃: market “elasticity” 

~ 252 hr. ~ 200 hr.

- ~ 10 min.

< 1 s ~ 100 s

~ 252 hr. ~ 200 hr.

Sim.

Train

Gurobi

Total

(2) (1) 

$75.35 M $73.96 M

(3) (1) 

Obj.

(1) has major bottlenecks 
with simulation time

 (2) reduces data 
requirement via 

embedded surrogates

(1) must specify 𝑁𝑐

 (3) determines 𝑁𝑐 & 
has lower overall cost
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