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Background Deterministic Optimization Non-Robustness of Nominal Designs

Amine-based CO, absorption systems are considered important for Gives minimal cost designs for different capture targets e Nominal designs are non-robust and less likely to adapt to increased

CO, emissions reduction pathways Model predicts maximum possible CO, capture rate of 98.2% capture targets

|\/|0d6|3_f0r a.lmine.-based absorpti_on are highl_y sensitive to epistemic (dashed line), we were able to obtain designs for targets up to e A significant level of over-design required to establish guarantees
uncertainty in their thermodynamic and physical property submodels 98 1%

' ' % Capture Cost _ -
Objectives Tt o] pcesmgnang
Development of a rate-based optimization model for an MEA-based _— 1369 51 by CPrre and
absorption column for CO, removal from NGCC flue gas ' '
14.00

Uncertainty quantification (UQ) studies to assess the robustness of 87.9
deterministically optimal designs 90.0 14.32

Two-stage robust optimization (RO) with the recently developed 92 5 14.70
PyROS solver for technical risk reduction

Deterministic | Objective Total % Gaussian Probability Mass (and
Solution for | (102 m3) number of realizations out of 200) Feasible
Nominally Min. % CO, Subject to Capture Rate % Requirement of

i Capture :
optimal for P 850 875 | 90.0 (925 950 @97.0 Evaluating
Increasing robustness for

% capture g5 | 481 12 |00 |00 00 00 increasing
(81) ®) (0) © | © (0) capture rate

87 5 90.3 | 46.9 | 3.9 00 00 00 requirement
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0 - 925 99.3 97.6 80.8 485 6.4 0.1
95.0 15.21 85.0 87.5 90.0 925 95.0 } | ' (189) (A7) | (182  {(87) | (26) (3

CO2 capture rate requirement (%) 998 993 | 975 |81.9 482 119
97.0 16.06 —e— F (kmol/s) 95.0 ' (190) (186) (166) (132) (82) (45)

Absorption Column Model  less |o95 (998 lloez |s1s |82

(189) (185) (184) (172) | (127) | (82)

f
Degrees of Freedom: wees F

e Column length (L) J’\\_ VA solven Parameter Estimation and UQ

e Column diameter (D)
Used parmestlt to

e Solvent recirculation rate (F) | VLE viscosity tseur:fsai‘c():ﬁ identify point estimates TWO-Stag e Robust OQtl mization with

o adjustable during operation and covariances in:

~5,000 _ * vapor-liquid th P RO S S I
variables | equilibrium (VLE), lNe FyrRYos sSolver

Minimize: / | I . _
' _ _ o _ and : ” : ; . === | ° solution density, 5 3.
e Proxy cost objective combining column size constraints 2 1 / - viscosity, and PyROSI> 3l a nonconvex two-stage RO solver based on the Pyomo

(CAP EX) and M EA flowrate (OPEX) 02 03 04 05 06 0 01 02 03 04 05 SO'Sm; E’0.050 01 02 03 04 05 ‘ Surface tenSIOn mOdeling Ianguage. Documentation at:
parameters. https://pyomo.readthedocs.io/en/stable/contributed packages/pyros.html
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. v A e Robust designs are more expensive than their deterministic

. . . o : counterparts
e Process equality constraints flue gas COz-rich solvent / Puteomes Cost incpreases only as necessary for increased feasibility guarantees
= [ == | | (1)Model predictions y y yd9

o thermodynamic and transport equations ool || Cotnto i || ottty | | Smiin most affected by (more scenarios factored in)

e Sizing constraints // ST uncertainty in VLE Such robust design hierarchies establish an upper limit on the $ worth

o bounds on the L/D ratio (1.2—30 used) - === parameters spending to reduce uncertainty
e Performance constraints - L | |1 (2)Insignificant response o e.g., shall we do more “science” to improve our property models?
: P = | |3 to uncertainty in the
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O Flooding fraction bound constraints model parameters Minimum Robust Column Proxy Cost and DOF (L, D, F) Values [m, m, kmol/s]
: . : : Capture for different Confidence Levels
(simplified after rigorous analysis) Rate (%)

Uncertainty Propagation through absorption column model: 0% (deterministic) 90% 95% 99%

’ —VL]'EParams. | ’ —VLEP'aramls | 500 —VL]'EZParIams' I 1432 1719 1757 1837
T arams ‘ e arams e arams ' (18.33, 15.28, 14.45)  (25.09, 15.51, 17.08) (26.43, 15.52, 17.29)  (29.24, 15.55, 17.76)

Visc Params Visc Params Visc Params
L |- Surf Tens Params ——e Surf Tens Params == Surf Tens Params
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