Process Modeling and Analysis of a Novel Sorbent Material for Direct Air **Capture Applications**

Daison Yancy Caballero0^{1,2}, Ryan Hughes^{1,2}, Jinliang Ma^{1,2}, Anca Ostace^{1,2}, Miguel Zamarripa^{1,2}, Ali Sekizkardes¹, Janice Steckel¹, Benjamin Omell¹ ¹National Energy Technology Laboratory, Pittsburgh PA. ²NETL Site Support Contractor

Contact:

Daison Caballero, NETL support contractor, <u>Daison.YancyCaballero@netl.doe.gov</u>

Rigorous TVSA model developed in Aspen Adsorption (– sweep gas (steam)

Effect of humidity on CO₂ adsorption:

Isotherm model for PIM-1 sorbent with enhancemen wet CO_2/H_2O co-adsor

Assumption: We cope with the limited availability of data by combining sorbent PIM-1-AO-TAEA CO₂ isotherm with available H₂O isotherm for ot materials (Lewatit VP OC 1065^[1])

Research & Innovation Center

.5

	TVSA Process Results			
	Metric/Cases	1	2	3
	CO ₂ Capture %	0.8	83.2	81.5
ent of the	CO_2 Purity %	3.1	12.7	17.7
ontactor.	CO ₂ Purity % (H ₂ O-free)	10.3	96.2	87.2
	Specific Energy (MJ/kg)	1707	20.6	33.7
ES/Aspen /lodels 0.1 0.01	Cases tested: 1. 75 °C, humid air, no enhancer 2. 100 °C, humid air, no enhancer 3. 75 °C, humid air, enhancemer 4. 100 °C, humid air, enhancemer 5. 75 °C, humid air, no enhancer	nent fac ement fa nt factor, ent factc nent fac	tor, no s ictor, no , no swe or, no swe tor, swe	sweep sweep swee ep gas ep gas
	Sensitivity Stu	dy (A	spen	Мо
ork (0D 1D model)	(⁶⁰ 50 40 30 20	• De (st	 sign vari ep times FC and H 	ables a , press TC incr
spen model	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^{Conly} • Rea 100°C and 10	generati d 100 °C	on con
	Conclusions			
and 4. Regeneration L-AO-TAEA t factor for	 Enhancement of CO₂ loading performance of the TVSA presentation of the TVSA presentation of the TVSA at 0.2 bar vacuum presentation of the transference of transference of transference of the transference of transference of	g due to ocess ssure ang gh CO ₂ p	water ir d 75 Ĉ d urity or with lite	n humi lesorpt a high erature
zero 298 K Dry	energy requirement is highe <u>References</u> [1] J. Young, E. García-Díez, S. Garcia, and M. van e the optimal performance of sorbent-based direct 5377-5394, Aug. 2021.	r der Spek, "Th air capture pi	e impact of b rocesses," En	oinary wate ergy Enviro
348 K Wet 373 K Dry 373 K Wet 1.0E+00	Acknowledgements: We graciously acknowledge fundi and Carbon Management, through the Carbon Dioxide	ng from the l Removal Pro	J.S. Departm gram.	ent of Ene
the ther	Disclaimer: This project was funded by the United States Determined a site support contract. Neither the United States Go support contractor, nor any of their employees, makes a responsibility for the accuracy, completeness, or usefulned represents that its use would not infringe privately owned rigonary service by trade name, trademark, manufacturer, or oth recommendation, or favoring by the United States Governme herein do not necessarily state or reflect those of the United States o	epartment of E vernment nor a iny warranty, e ss of any infor ghts. Reference erwise does n int or any agence States Governm	nergy, Nationa any agency the express or im mation, appar herein to any ot necessarily cy thereof. The nent or any age	al Energy Te ereof, nor an plied, or as ratus, produ specific cor y constitute views and c ency thereof

Science & Engineering To Power Our Future

NATIONAL NOLOGY

Energy, Office of Fossil Energy

y Technology Laboratory, in part, or any of their employees, nor the or assumes any legal liability or oduct, or process disclosed, or commercial product, process, or ute or imply its endorsement, nd opinions of authors expressed