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▪ First-principle models with rigorous property 

calculations using IAPWS95
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integration of TES
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▪ The decarbonization of the electrical grid requires base load fossil generators to 

be more flexible

▪ Thermal energy storage (TES) systems help reduce frequent cycling of power 

plants and allow operating at higher efficiencies

Step 2: Multi-period under Price-taker

Motivation

Future Work

Results

• Explore use of surrogate models to extend the analysis to longer time horizons 

with se asonal variations and historical data for electricity prices.

• Extend study beyond price-taker assumption by explicitly including market 

interactions of the designed IES.
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Step 1: GDP Design 

Determine continuous design decisions, such as size and operational conditions of 

TES when considering dynamic electricity market

Problem Statement

GDP superstructure optimization to determine discrete design decisions for 

integration of TES with thermal generator

Price-taker Assumption

• Average electricity prices for 

one representative day and 

week of the year

• Expected behavior: Store 

energy at low electricity prices

• Consider two cases:

1 Source: U.S. Energy Information Administration. https://www.eia.gov/totalenergy/data/browser/?tbl=T01.02#/?f=M&start=201304&end=202305&charted=1-2-3-4-6-13, 

Accessed September, 2023

Primary Energy production by Source 4/1/2013 – 5/1/20231

Methodology

Use rigorous IDAES and DISPATCHES models and advanced cutting-edge 

solvers, such as GDPopt
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Salt profiles for operation-only for an average-day 

and week of the IES

Step 1: GDP Design

▪ Systematically evaluate multiple flowsheet configurations within two models

▪ Rank all alternative solutions for integrating TES in terms of their net profit.

Challenge 1

▪ What are the optimal 

integration points to add and 

remove heat from the plant?

▪ What is the best and cheapest 

storage material?

Generalized optimization approach consists of 

two steps:

1. Conceptual design using a Generalized 

Disjunctive Programming (GDP) to 

incorporate discrete design decisions as 

disjunctions

2. Optimal design and schedule of integrated 

energy system using a multi-period 

formulation under a price-taker assumption

Challenge 2

▪ What is the optimal size of TES 

when considering dynamic 

electricity markets?

▪ When and how to deploy 

storage to maximize profit?

Multiple points for integration of TES

Integrated Model

• Fixed points of integration of TES 

from GDP design

• Charge and discharge in the same 

flowsheet with minimum flow 

constraints
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Step 2: Multi-period under Price-taker

▪ Considering time-varying electricity prices prevents over-sizing TES

▪ Longer time horizons better capture dynamic electricity prices to increase 

operational profit in IES

Salt profiles for simultaneous design and operation 

for an average-day and week of the TES
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Methodology can be applied for designing storage systems for fossil, 

nuclear and geothermal energy systems

Storage utilization
 32% (left) vs.

89% (right)

Capital cost 
$676 (left) vs.

$395 (right)
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