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Flowsheet Visualizer Features

• Automatic layout of diagrams

• Dynamically add new elements when underlying 

models change

• Sortable, filterable stream table

• Synchronized highlighting of streams in table and on 

diagram

• Export diagram as an image, stream table as CSV

• Diagnostics information from new IDAES diagnostics 

functions (pre-release)

• Improved layout and better resizing

New Features Future Plans
Which one(s) should 

we do first?

Execute and re-execute models with modified 

variables and configurations

Browse “tree” of all variables and model constraints

Perform interactive troubleshooting: run “next steps” 

and fetch more detailed information

Interactively build flowsheets (from existing 

components)
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Other Advanced PSE+ user interfaces using this architecture

Other types of 

interfaces can leverage 

this architecture for 

display and access to 

data
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Deployment

pip install 
     ideas-pse[ui]

Install Python 

package with pip

Releases on GitHub

• Refactored to use a modern 

front-end framework (ReactJS) 

for better testing (Cypress) and 

long-term maintenance

• Updated documentation 

Online 

documentation on
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