
IDAES core

IDAES Python APIs

Pyomo and other libraries

Solvers (ipopT, ETC)

IDAES model classes

Model data &
metadataSerialized model data &

metadata

Network (local or
Wide-AREA)

Reactjs
And other javascript frameworks
& libraries

application javascript code

Process user input

user input

Model data & metadata
As application objects

Python WEB APis

IDAES UI applications

Rendered data
PYTHON UI wrappers
UI actions / IDAES
functions

Electron app container

Visualization and User Interfaces

Unified Flexible Architecture Across IDAES Ecosystem

Dan Gunter, Sheng Pang, Sarah Poon, Cody O’Donnell
Lawrence Berkeley National Laboratory

Contact: Dan Gunter, dkgunter@lbl.gov

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United

States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof

Flowsheet Visualizer Features

• Automatic layout of diagrams

• Dynamically add new elements when underlying

models change

• Sortable, filterable stream table

• Synchronized highlighting of streams in table and on

diagram

• Export diagram as an image, stream table as CSV

• Diagnostics information from new IDAES diagnostics

functions (pre-release)

• Improved layout and better resizing

New Features Future Plans
Which one(s) should

we do first?

Execute and re-execute models with modified

variables and configurations

Browse “tree” of all variables and model constraints

Perform interactive troubleshooting: run “next steps”

and fetch more detailed information

Interactively build flowsheets (from existing

components)

RUN

+

Other Advanced PSE+ user interfaces using this architecture

Other types of

interfaces can leverage

this architecture for

display and access to

data

P
 he Produced ater

 ptimi ation nitiative

Deployment

pip install
 ideas-pse[ui]

Install Python

package with pip

Releases on GitHub

• Refactored to use a modern

front-end framework (ReactJS)

for better testing (Cypress) and

long-term maintenance

• Updated documentation

Online

documentation on

	Slide 1

