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« Electricity demand will increase more than expected due to increased interest in electrification!d. RESOLVE IDAES expansion planning — S el T e Scenario generation based on California Policy and Regulatory Environment(é.9!
« CO, emission has sharply increased over the last few decades!?. Ver. 1 P P g ' Scenario #1 | Scenario #2 | Scenario #3 | Scenario #4
 The number of large-scale power outages has increased by 78% during 2011-2021, compared to 2000- . Ins_tallanon_and retirement _ _ « Installation and retirement CO, emission limits (30% reduction by 2030) X o) 0O 0O
20100 Nt commitment - Installation and refirement * Lifetime expansion of facilities Renewable generation (60% of the total generation by 2030) X X o) o)
e G P e e - Storage balance & ELCC « Unit commitment . Unit commitment 9 0 9 y
Seichy ceman . MAJOR U.S. POWER OUTAGES Major constraints4, Demand « Storage balance Battery installation (50% new installation compared to 2021) X X X o)
Share Oftotalenergy consumptlon, % - _ Intemational — Weather-Related Non Weather-Related . . . . . .. . ® StOl'age balance
60 | | = e 150 constraints | response & CO, emission * CO, emission limits & Minimum | CO. emission limits & Minimum
Net zero? limits renewable share renéwable share Scenario #1 (No CO, emission and renewable constraints)
Rapid® 401 | 2o 100 * Minimum renewable share » DC flow model * Reliability constraints & DC flow model 4000 intai ioting i i
. o « Network flow model y s WNG(SC)  ®NGCC  mNGCCw/ CCS BT « Maintain existing infrastructure, and 1 NGCC without
Businessasusual® 0 | | - « Unit commitment with . . L = 3000 - CCS (400MW) and PV (10MW) & battery (10MW) are
ol ol | « Linearized unit commitment | integer/Boolean variables * Unit cg)lmmltmentwnh binary (Boolean) g 2000 I I Installed in Node 4 at Year 4 and Year 10, respectively.
R L R S e . : : . : ity is fi variables 51 « Only 5% of large-scale renewable generators (such as
N 49. . 5 bilon Computat- Contlnu_ous capaC|t.y 2 : Ava_llaple capacity is fixed = » Facility can choose different sizes © 100 | Y | -gd bi d sol J IS) | ( ilabl
Source:BP Energy By 2050, carbon emissions reduced by: ‘ 2 . determine the optimal size optimize the number of L : : arge-scale wind turbines and solar panels) is available.
Outlook *less than10% 170% *over 95% ot \ \ B ional within a range facilities * Optimize planning and operating 0
1750 1800 1850 1900 1950 2021 g . Y1 Y2 Y3 Y4
features : : reserve systems depending on the
) _ _ B - Fixed reserve systems - Fixed reserve systems reliability target
Power systems should be carbon-neutral and reliable to improve sustainability and to « No tailored solution method |+ Nested and Tailored Benders ) Adecomyosit?on athod will be bronosed Scenario #2 (CO, emission constraint included)
satisfy growing electricity demand effectively while preventing power outages. decomposition P Prop 4000
"NG(SC) =NGCC =NGecw/ces =Pv =wT =BT | « Maintain existing infrastructure, and 2 NGCC with
1. California; Balancing Authority of Northern California (BANC), California Independgnt System Operation (CAISO), Los Angeles Department of Water and Power (LADWP), Imperial Irrigation District (11D), and two zones out-of-state 3000 m ] ! .
2: Texas; Panhandle, Northeast, West, South, and Coast 3: Users can choose different days and hours for each planning year CCS (GOOMW N Node 1 and 4OOMW N Node 4) are

Defl N Itlon Of rel |ab| | Ity : Effective Load Carrying Capability, used to evaluate the reliability of power systems with high penetration of renewables

2000 I I I installed at Year 8 and Year 4, respectively.
* Inthe area of Reliability, Aerospace, Nuclear, and Chemical Engineering,

1000 I I I I * The capacity of wind turbines in Node 3 is expanded
» Reliability: A probability that a device, a machine, or a process can perform its required function " P " : ( ) j I I I I I I I I t (~15MW).
without Failures for & given tine. Generalized Disjunctive Programming (GDP) model o

> The definition is more related to the performance of individual units or processes.

Capacity (MW)

+ In power grid, Min Cost = CAPEX + OPEX + Load shedding penalty VI Scenario #3 (30% CO, reduction & 60% renewable gene_rahon) N |
> Reliability: An ability to supply uninterrupted power always to satisfy the load demandl. s.t. N & Gdug O [ aNG(S0) =NGOC =NGOOWCCS =Pv  mwT =BT * NGCC with CCS (100MW) is installed in Node 4 at
» As the power grid comprises numerous power generators and transmission lines, it focuses on Investment constraints 6000 Year o. _ _ _ _ _
securing sufficient generation and line capacity to satisfy the load demand. | . : : Python 3.10.12, Pyomo 6.6.2 z * The capacity of wind turbines in Node 3 Is expanded

» The definition is more related to the performance of the network. ) nstallat!on/ I|fet|m_e extension of dispatchable generators < 4000 B I CVery year.
» Installation/capacity expansion of renewable generators and battery £ _ = = B I » Wind turbines and solar panels are all installed in
 Installation of transmission lines % 2000 1 I 55 B 8 B B Nodes 1 (Years 4 and 6) and 4 (Years 3 and 7).

P b I | | J I I I I I I I I L - Renewable generation share increased up to 60% but
o em State me ﬂt Operation constraints ° va vi  vs  vo

Yi o y2 vio  alarge amount of curtailment occurred.

« Ramping up/down, start-up/shut-down, and unit commitment

Goal: To plan an infrastructure of reliable and carbon-neutral power systems » Charging/discharging levels of storage Scenario #4 (30% CO, reduction & 60% renewable generation & 50% battery)
— Application to San Diego County - DC power flow and power balance 10000
Details « Fuel consumption and CO, emission estimation w000 | NGB mNGCC mNGCCwCCS =PV mWT =BT « Overdesigned wind turbines are reduced, and the
erlo an optimization model that determines long-term (yearly) investment decisions and short-term » Loss of load expectation (LOLE) and expected energy not served (EENS) estimation s capacity of PV is increased than Scenario #3.
b-an optr o - g yearly - « CO, emission limit and minimum share of renewable generation = « 72% of electricity curtailment of Scenario #3 is reduced.
(hourly) operation decisions and explicitly evaluates power system reliability. 2 2 4000 I
b) Solve the San Diego County case study and compare the performance of two models (IDAES model and S - m R B 7000 6,589
RESOLVE) for the case. . . . o = _J. I I I I I I I I .l: 6000 L
Given Case study: San Diego County, California S e e e m v
- Load demand projection over a planning horizon « Capacity of existing facilities and transmission lines - _ _ - o 4000 e
o Capacity factor for renewable generators . Ramp|ng up/down rate, Charging/discharging rate Genel‘athﬂ & transm|SS|0n ne'[WOI’k N 2021 ReDresentatlon Of case StUdV COmpUtathna| results Time limit: 36005,885}2:3(!3/3;[31330-? g 2000 -
Determ | ne . . . N a ] Eéé%&ﬁ'%ﬁ;e"%swﬂwc i) N # Binary | # Cont. Vars | # Constraints CPU (sec) § 2000 476 1,887
e |nstalled Capacity of generators batteries. and lines o Operatlng and reserve CapaCIty for rellablllty " Scenario #1 296,624 223,791 1,247,963 1,045.51 (Gap: 0.98%) - -
! ! . ‘w 1000
« Location and timing to install, retire & extend facilities * Operation schedules of generators and battery \ Scenario #2 | 296,624 223,801 1,247,983 | 3,600.00" (Gap: 2.03%)
« Power output, level of charge, and power flows | Scenario #3 | 296,624 223,801 1,247,993 | 1,811.44 (Gap: 0.67%) ° ot Sc#2 Sc#3 Sc #4
) . ) ',;G'(Sbm;(cYH;g;z Wavc J Scenario #4 296,624 223,801 1,248,003 3,600.00" (Gap: 3.62%) | F_.'acili_ty investment cost = R.enewable e_xpansion cost m Variable operating cost
Spaﬂal representaﬂon Tem pora| representanon e e \ - Line investment cost Fixed operating cost ® Fuel cost
B Shut down cost m Start up cost

\
/l Wind turbine

Investment decisions are made at the beginning of each year
Batteries Node 2

‘ ‘ ‘ ‘ m NG plant [
’ Wind turbines Node 1 C I d f k
. Natural gas plants Year 1 Year 2 Year 3 (Yte:rT-)r Fl O n C u S I O n S an u t u re WO r
> e — ‘ ™ Existing « Proposed an optimization model for infrastructure planning of reliable and carbon-neutral power systems
Representative days (n € N) k- _‘_':' « Verified the model on a case study involving the San Diego County with different environmental constraints.
. Day Potential . . . .
Node i € I Day1| Day2 365 : : : . transmission ines « The Impact of representative days on the optimal design of power systems will be analyzed
03 A Y [ NSRS S S S [7] '
Facility k € K I N e Subperiods (b € B) Potential sites for nd tmeeS and pan v'10-year planning, 3 representative days, 24 hours for each day
Storage k € K \ T, i > et B v Size:4nodes  Demand &supply () Supply-only (O Contact: Seolhee Cho, seolheec@andrew.cmu.edu
Generator k € K¢ \ :
Dispatchable k € kP \ S 2 Y 2 S 2 S 2 Assumptions Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
Ispalchable k € . \ Operation problems are solved for each subperiod v' Generator types: NG (Simple cycle), NGCC (w/o CCS), NGCC (w/ States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
Renewable k € K \ . of each representative day CCS), Wind turbine, PV, and Li-ion battery. responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
Linel €L e - v Supply-only nodes can only install renewable generator_ and use would not infringe p_rivately owned rights. Referenc_:e herei_n to any specific commercial product,_ process, or service by trgde name, trademark,
Existing line [ € LEX - How t lect tative d f liabilit luation? batteries manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Potential line 1 € LPN OW 10 select represeniative days 1or refiabliity evaluation: v P : Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
otential line - Select average days and add extreme days such as the days Dispatchable generators in demand and supply nodes can be States Government or any agency thereof.
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