
IDAES Diagnostics Toolbox

Contact: Andrew Lee, andrew.lee@netl.doe.gov

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency

thereof, or any of their contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or

any of their contractors. The Lawrence Berkeley National Laboratory (LBNL) is managed and operated by the University of California (UC) under U.S. Department of Energy Contract No. DE-AC02-

05CH11231. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of

Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Writing Good Models is Not Easy

Andrew Leea,b, Robby Parkerc, Alex Dowlingd, Sarah Poone, Dan Guntere, Michael Bynumf, Bethany Nicholsonf

a National Energy Technology Laboratory, b NETL Support Contractor, b Los Alamos National Laboratory, c University of Notre Dame, d Lawrence Berkely National Laboratory, e Sandia National Laboratories

Expert Assistance on Demand Diagnostics Workflow Can You Find All 8 Issues?

Proven Value

IDAES and Pyomo teams are already successfully using the toolbox

• New Mexico SBIR: fluidized bed reactor application
• PrOMMiS: scaling issues with trace component concentrations
• IDAES: improving robustness of problematic flowsheets

Structural Issues
• Degrees of freedom
• Structural singularities
• Inconsistent units of measurement
• Potential evaluation errors (v2.3)
• Unused variables
• Variables fixed to 0

Bad models are easy to write.

Poor quality models cost time and effort due to:
• Errors and debugging
• Fragile and non-reproduceable results
• Limited robustness
• Hard to reuse

Have you even wished you had the IDAES and Pyomo teams on call
to help resolve your modeling issues? The new Diagnostics Toolbox
puts these team’s combined expertise at your fingertips through
an easy-to-use interface.

The Diagnostics Toolbox provides:

• automated checking for a wide range of issues
• easy to read summaries of issues found
• automated recommendations for next steps to take

Some examples of issue we can help solve:

• Potentially infeasible (bounds violations, poor scaling,
singularities)

• Evaluation errors (AMPL evaluation errors)
• Poor convergence (poor scaling, degeneracies)
• Incorrect answers (unit inconsistency, degeneracies)

from idaes.core.util import DiagnosticsToolbox
dt = DiagnosticsToolbox(m)
dt.report_structural_issues()

Advanced Checks
• Singular Value Decomposition (SVD) analysis (v2.3)
• Degeneracy Hunter (v2.3)

v2.2.0

Now Available

Easy to Use

Diagnostics Checks

Numerical Issues
• Constraints with large residuals
• Variables at or beyond bounds
• Extreme Jacobian rows, columns and entries
• Variables near bounds
• Variables with extreme values
• Variables with no value

Try the Toolbox Yourself

import pyomo.environ as pyo

m = pyo.ConcreteModel()

m.v1 = pyo.Var(units=pyo.units.m)
m.v2 = pyo.Var(units=pyo.units.m)
m.v3 = pyo.Var(bounds=(0, 5))
m.v4 = pyo.Var()
m.v5 = pyo.Var(bounds=(0, 1))
m.v6 = pyo.Var()
m.v7 = pyo.Var(units=pyo.units.m, bounds=(0, 1))
m.v8 = pyo.Var()

m.c1 = pyo.Constraint(expr=m.v1 + m.v2 == 10)
m.c2 = pyo.Constraint(expr=m.v3 == m.v4 + m.v5)
m.c3 = pyo.Constraint(expr=2*m.v3 == 3*m.v4 + 4*m.v5 + m.v6)
m.c4 = pyo.Constraint(expr=m.v7 == 1e-8*m.v1)

m.v4.fix(2)
m.v5.fix(2)
m.v6.fix(0)

8 Variables:

 𝑣1 - [m]
 𝑣2 - [m]
 𝑣3 - 0 ≤ 𝑣3 ≤ 5
 𝑣4
 𝑣5 - 0 ≤ 𝑣5 ≤ 1
 𝑣6
 𝑣7 - [m], 0 m ≤ 𝑣7 ≤ 1m
 𝑣8

4 Constraints:

 c1: 𝑣1 + 𝑣2 = 10
 c2: 𝑣3 = 𝑣4 + 𝑣5

 c3: 2𝑣3 = 3𝑣4 + 4𝑣5 + 𝑣6

 c4: 𝑣7 = 1 × 10−8 𝑣1

3 Fixed Variables:

𝑣4 = 2, 𝑣5 = 2, 𝑣6 = 0

How Can We Encourage Good Model Writing?

Provide tools to assist users with tools to help identify
and resolve modelling issues.

Interviewed expert users to understand their modeling
and debugging workflows and the tools they used.

We Cannot Fix It For You…

Fixing issues requires engineering knowledge.

… but We Can Tell You What is Wrong.

Tools to automatically identify many common issues.

	Slide 1

