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• Energy systems optimization requires the solution of challenging mixed-integer 

linear and mixed-integer nonlinear optimization problems (MIPs and MINLPs)

• MIPs and MINLPs are solved by branch-and-bound algorithms that involve a 

number of heuristics in their branching step

• This research aims to develop ML-guided branching algorithms and 

demonstrate them in energy systems optimization
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• Each branching candidate at a node in the search tree has a set of features:

1. Aggregated Graph Neural Network features (Gasse et al., 2019)

2. Khalil et al., 2016 features 

• Ecole library (Prouvost et al., 2020) is used for extracting features

• This work uses quadratic transformations of features

Features

Implemented and compared several ML-based branching rules

Existing algorithms are based on Graph Neural Networks (GNNs) that involve tens of 

thousands of parameters. As a result, they require hundreds of thousands of training 

data and their implementation is very slow in the absence of Graphics Processing 

Units (GPUs). On the contrary, the models we propose involve a few tens or 

hundreds of parameters, no more than a few hundreds or a few thousands of training 

data, and are computationally efficient on standard CPUs.

• Sparse models have < 2% of the parameters in the GNN model

• On average, sparse models are faster than the default SCIP rule (RPB) in 

large combinatorial auctions (the LASSO is 20% faster) and facility location 

(the LASSO is 6% faster) problems. L0Lq models are significantly sparser 

than the LASSO models and their performance is comparable

• Given a large set of measurements of branching scores collected by solving 

many instances of a problem type, learn a function to predict strong branching 

scores so that strong branching can be applied to other instances without 

having to solve strong branching LPs

• Regression problem: Predict (normalized) strong branching scores

• Score ≈ 𝜷𝟏 Solution value + 𝜷𝟐 Objective coefficient + 𝜷𝟑 Number of rows the 

variable is in + …

• Past work: Neural networks, tree-based ensemble methods

• This work: Sparse models based on the LASSO, L0L1, and L0L2

• Problems: Set covering, combinatorial auctions, facility location
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• Sparse models are solutions to

• Penalizing number of nonzero coefficients and the norm of the solution vector

• The LASSO   𝝀𝟎 = 𝟎, 𝝀𝟏 > 𝟎 using glmnet package (Friedman et al., 2010)

• L0L1 model 𝝀𝟎 > 𝟎, 𝝀𝟏 > 𝟎 using l0learn package (Hazimeh, 2022)

• L0L2 model 𝝀𝟎 > 𝟎, 𝝀𝟐 > 𝟎 using l0learn package

• Increase speedups of our algorithm by:

• Increasing predictive ability of our models through new features

• Predicting which variables lead to infeasible nodes in the search tree

• Application to various energy models

• Currently working on large-scale security-constrained unit commitment 

problems

Model
# of Trainable 

Parameters Across All Models

LASSO 143–1,123

L0L1 41–50

L0L2 41–50

GNN 64,000

CPU Times
The figures below show CPU times for different problem classes and different 

learning algorithms. RPB is the default SCIP and GNN is based on previous 

literature. The others are the proposed algorithms. Our algorithms speed up SCIP, a 

state-of-the-art MIP solver (the best open-source MIP solver.)
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