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Sparse Regression CPU Times

The figures below show CPU times for different problem classes and different

Motivation: Speed up a MIP Solver

« Energy systems optimization requires the solution of challenging mixed-integer

« Sparse models are solutions to

linear and mixed-integer nonlinear optimization problems (MIPs and MINLPS) learning algorithms. RPB is the default SCIP and GNN is based on previous

* MIPs and MINLPs are solved by branch-and-bound algorithms that involve a : literature. The others are the proposed algorithms. Our algorithms speed up SCIP, a
number of heuristics in their branching step 5 carg min z H}/ = Xﬁ”% + AUHﬁHg it AqHﬁHg state-of-the-art MIP solver (the best open-source MIP solver.)

» This research aims to develop ML-guided branching algorithms and peR? Set Covering Comb. Auctions
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demonstrate them in energy systems optimization
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« Penalizing number of nonzero coefficients and the norm of the solution vector

Machine Learning Task

7 « The LASSO Ap=0,4,>0 using gimnet package (Friedman et al., 2010)
 LOL1 model Ag > 0,4, >0 using lOlearn package (Hazimeh, 2022)
 LOL2 model Ag > 0,4, >0 using lOlearn package
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Implemented and compared several ML-based branching rules

°

1000 -
score, = f(471,47)
» Given a large set of measurements of branching scores collected by solving # of Trainable o
many instances of a problem type, learn a function to predict strong branching =
600
scores so that strong branching can be applied to other instances without Parameters Across All Models £
having to solve strong branching LPs g o
S
* Regression problem: Predict (normalized) strong branching scores LASSO 143-1.123 200 -
4
TARGET
Feature 1 | Feature 2 | Feature 3 Score v RPB LOL1 LOL2 LASSO GNN-CPU
LOL1 41-50 :
Conclusions
N2 . « Sparse models have < 2% of the parameters in the GNN model
N LOL2 41-50 « On average, sparse models are faster than the default SCIP rule (RPB) in
large combinatorial auctions (the LASSO is 20% faster) and facility location
the LASSO is 6% faster) problems. LOLg models are significantly sparser
GNN 64,000 ‘ olasten) p 4 nricantly sp

than the LASSO models and their performance is comparable

« Score = 8, Solution value + g, Objective coefficient + g, Number of rows the

able is in + Existing algorithms are based on Graph Neural Networks (GNNSs) that involve tens of
variable isin + ...

thousands of parameters. As a result, they require hundreds of thousands of training

bast N | networks. free-based " thod data and their implementation is very slow in the absence of Graphics Processing
a_s WorK. TNeUral REIWOTKS, Tree-hased Ensembie MEthods Units (GPUSs). On the contrary, the models we propose involve a few tens or Future Work
« This work: Sparse models based on the LASSO, LOL1, and LOL2 ..
hundreds of parameters, no more than a few hundreds or a few thousands of training . _
 Increase speedups of our algorithm by:

data, and are computationally efficient on standard CPUs. . L .\
 Increasing predictive ability of our models through new features
Features - Predicting which variables lead to infeasible nodes in the search tree

* Problems: Set covering, combinatorial auctions, facility location

Contact: Nick Sahinidis, nikos@gatech.edu
« Each branching candidate at a node in the search tree has a set of features:
Disclaimer: This work was conducted as part of the Institute for the Design of Advanced Energy Systems (IDAES) with support from the U.S. ° I I I
1_ Aggregated Graph Neu ral Network featu res (Gasse et al_, 2019) Department of Energy’s Office of Fossil Energy and Carbon Management through the Solid Oxide Fuel Cell Program’s Integrated Energy Systems thrust. Appllcatlon to various energy mOdeIS
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2_ Kha||| et al_, 2016 features nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the Currently Worklng on Iarge Scale Securlty COﬂStralned unit commitment
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately rOblem S
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