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Motivation: Evolving Grid Increasingly Requires Flexibility
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https://www.ercot.com/gridinfo/generation

Integrated Energy Systems (IES) Provide Dynamic Flexibility
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Key Contributions

« Capabilities for process design and techno-economic analysis of “flexible” systems

Applications: Simultaneous design and operations optimization
 Natural gas combined cycle + capture system
— Determined the optimal capture rate and the effective capture rate for a given market

» Direct-fired supercritical CO, power cycle
— Quantified the effectiveness of energy storage and participation in multiple markets

« Co-production of power and hydrogen
— Quantified the impact of grid interactions on breakeven price of H,
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Key Contributions: Capabilities for Process Design and Techno Economic
Analysis (TEA) of Flexible Systems

Add a new generator, or “Forward Interaction” Reaion 1 Region 2
retrofit an existing generator egion o®
G(—'_.-nerator’_s impact on the “ o o ® . o —*
grid behavior * o ° ° °
. o .
® ®

s

®
®
“Reverse Interaction” .

NATURAL GAS . . : .
POWER PLANT Impact of grid behavior on «* * ' Region3

design and operation

Traditional TEA Approach — Levelized Cost Analysis
= |gnores both forward and reverse interactions
Price-Taker Approach

= Allows for reverse interaction to inform process design
Market Interaction Approach

PR = Considers both forward and reverse interactions



Traditional Techno-Economic Analysis — Levelized Cost Analysis

Forward Region 2

¢ Ju“ interaction ~ Region 1 Lo Pros:
I B R S L °.'. « Optimizes design assuming steady state
.‘.'. et e operation throughout
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POWER PLANT eraction NS - Suitable for baseload plants
«* * %o Region3

ERCOT Generation Mix - March 2023
—Coal Gas-CC —Nuclear —Solar —Wind —Total CO ns:

* Not suitable for flexible systems
— Price volatility is not included
— Capacity factor is not known a priori
— Startup/shutdown costs are neglected
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Price-taker Approach

Pros:
JproTn F:rwart'gl region Region 2 « Design optimization while considering
< I | eragton T R (simplified) dynamic operation
:O.o o* ‘.'. .
Ei t— ]  Suitable for load-following plants, storage
NATURAL GAS Reverse G e systems, co-production systems, etc.
interaction R T

* ® o Regon3

« Accounts for price volatility, ramping
limits, startup/shutdown constraints, etc.

Locational marginal prices (LMPs) serve as
a representative of the grid behavior Con:

« May not be suitable when the system’s
power is a significant portion of the node

capacity
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Market Interaction Approach

Pros:
« All advantages of price-taker

Forward Region 2
L ]

interaction Region1

_— *e .« o :
oot Y« + Impact of the generator on the grid
' - L behavior is included (active bidding)

Reverse

interaction * o, °
e * *, Region3

Cons:
* Requires detailed grid information

« Computationally intensive



IDAES Grid Integration Tools

« Goal: Simplify the implementation of price-taker PriceTakerModel()
models Appending the data to the model
.append_1mp data("lmp data.csv®)
» Developed “PriceTakerModel” class Build design models
— Constructs a multi-period model of a given el fomconoce Bt el
flowsheet (supports surrogate models and model args={"params": ngcc_ref},
detailed IDAES process models)
— Clusters time-varying price data .ccs_design = DesignModel(
. model func=ccs_design_model,
— Method for tracking storage levels model args={"params": ccs_ref},
— Method for adding minimum up-time and down- EU%%S mu;E%Per‘%Oj Opzf‘flﬂtion model
. . .build multiperiod _mode
tlme, Startup and shutdown constraints process model func=build ngcc ccs flowsheet,
— Method for adding ramp rates linking_variable func=None,
_ _ flowsheet options={
— Method for calculating detailed cash flows "ngcc_des_blk": m.ngcc_design,

"ccs_des blk": m.ccs_design,
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Flexible Operation of NGCC with CCS

« Goal: To find the set of conditions that
provide optimal NPV. Conditions
include:

— System design (Capture rate)

— Plant dispatch (CCS and NGCC
separately)
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Optimal Capture Rate for most Scenarios is ~95%

NREL’s CAISO_ $150/tonne scenario: Capture system increases NPV

« Capture system increases the capacity factor by ~9.5%
« Effective capture rate is lower than the design capture rate
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Numbers are scaled with those
IDAES corresponding to the case without CCS
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CCS Significantly Reduces Number of NGCC Shutdowns

Scaled NGCC Startups [-]
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Vent

Direct-fired Supercritical CO, Power Cycle
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* Power cycle requires oxygen
instead of air

MCapture is inherent — zero/near-zero
emissions

|Z[Co-produce nitrogen and argon —
Increases revenue and helps
decarbonize the air products industry

Less flexible — Slow ramping and long
startup time associated with ASU
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Onsite Liquid Oxygen (LOx) Storage Improves Flexibility

Air Separation Unit

-

Liquefaction
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Install a liquefaction unit (LU) and a storage tank

* During off-peak period
— Ramp down/shutdown Direct Fired Cycle

— Operate Air Separation Unit (ASU) and store
the produced O,

— Power for liquefaction can be borrowed either
from the grid or from the DFC

* During high demand
— Ramp down ASU and use stored O,

— Inject more power into the grid
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Key Research Questions

For a given electricity market:

« Does storage improve overall economics? What is the optimal size of the
storage system?

— Participate in electricity market alone
— Participate in both electricity and argon markets

» Does storage improve flexibility?
— Impact on number of startups and shutdowns
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Highly Profitable Argon Market Discourages Storage
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Small liquefaction unit,
69,000 tonne tank
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Market Interaction Approaches

Real-Time Market Loop

(1 cycle = 1 hour)
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Day-Ahead Market Loop

(1 cycle =1 day)

max E[ Profit ]
IDAES

min system
generation costs

&
k‘ij PRESCIENT

IDAES integrates detailed process models (b, ii) into the daily (a, c)
and hourly (i, iii) grid operations workflows

Gao, X., B. Knueven, J.D. Siirola, D.C. Miller and A.W. Dowling (2022). "Multiscale
simulation of integrated energy system and electricity market interactions." Applied
Energy 316: 119017, https://doi.org/10.1016/j.apenergy.2022.119017.

Code examples: https://github.com/gmic-dispatches/dispatches

Institute for the Design
Advanced Enert gy Systems

IDAES

Generator characteristics
Market metrics

Inputs

Generator characteristics

Market metrics

= Step 1: Generate training data

Production
Cost Models
(PRESCIENT)

Hidden Layers Outputs

Day-ahead and
real-time
dispatch and
LMPs

= Step 2: Train neural network surrogate model

Revenue

» (or)
Dispatch

= Step 3: Formulate and solve the design

problem by embedding market surrogates


https://doi.org/10.1016/j.apenergy.2022.119017.
https://github.com/gmlc-dispatches/dispatches

Power and Hydrogen Co-production

Increasing renewables - volatile grid
conditions

B Nuclear generators cannot respond
Participate in alternate markets, e.g., H,

B Increases profitability, efficiency, flexibility
B Decarbonize other sectors

Need to co-optimize design and operating
decisions of IES due to dynamic markets

Need to consider how the IES influences
markets, e.g., change electricity prices
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Nuclear Case Study Summary (Flexibility from Co-Products)

Problem Statement

How to improve the flexibility and economics of
baseload nuclear generators?

What is the optimal electrolyzer size and
minimum H, selling price?

Co-optimize design and operation

Method

Compare two modeling approaches:

Price-taker: assumes no impact on market
behavior, de facto standard

Multiscale Simulation: accounts for changes in
market behavior, novel contribution
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Hydrogen price [$/kg]

Nuclear Case Study Results: Price-taker vs Market Interaction

» Difference in the net present value and
breakeven H, price: $1.8/kg vs ~$1.4/kg

Price-taker Market Surogates
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Price-taker overestimates the breakeven H, price
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» Difference in electricity revenue
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Electricity revenue depend on H, vs electricity
production schedule — nuanced interactions



Electricity Prices Vary with the Size of Electrolyzer and H, Price

» Base case (400 MW baseload nuclear » Retrofitted case (400 MW nuclear generator
generator without an electrolyzer) equipped with a 200 MW electrolyzer — H,
sold at $1/kg)
Day-ahead Prices Real-time Prices
50% 50%
Il Base Case I Base Case
7] Retrofit Case CZ1 Retrofit Case
40% ~ 40% -
< <
> 30% 1 S 30%
W W
c c
@ @
g‘ 20% g‘ 20%
L o
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Nuclear Case Study Summary (Flexibility from Co-Production)

Problem Statement

How to improve the flexibility and economics of
baseload nuclear generators?

What is the optimal electrolyzer size and
minimum H, selling price?

Co-optimize design and operation

Method

Compare two modeling approaches:

Price-taker: assumes no impact on market
behavior, de facto standard

Multiscale Simulation: accounts for changes in
market behavior, novel contribution

Key Findings

Hybridizing nuclear with PEM to produce
hydrogen increases flexibility and profitability

Price-taker overestimates the breakeven H, price

Market surrogates accurately capture iterations

eeeeeeeeeeeeeeeeeeeeeeee

Impact

Method applies to other baseload generators,
e.g., large coal or gas-fired generators with
carbon capture

Easy to adapt to other electrolysis technologies —
solid oxide electrolyzer cell (SOEC)



Conclusion

« Developed novel capabilities for analyzing flexible and load-following systems
— Need to go beyond traditional techno-economic analysis

« Two approaches two include grid interactions
— Price-taker (multi-period) approach
— Multiscale simulation and optimization approach

« Applied to multiple case studies: additional examples include
— Integrated solid oxide fuel cell + electrolyzer systems
— Retrofitting renewables with green hydrogen gas turbines (industrial case study)
— Economics of a fuel cell peaker (industrial case study)
— Design and operation of flexible desalination systems
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Multi-period Optimization Workflows
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