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What is PrOMMiS?
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Short Answer: Application of the IDAES Integrated Platform to CMM

 Platform to Enable Innovation, Inform DOE Research, & Accelerate Deployment
• Process Modeling Software

• Process performance modeling
• Perform TEA and enable LCA

• Optimization Package
• Process Optimization
• Multi-criteria Optimization

• Support Commercialization



PrOMMiS: Process Optimization & Modeling 
                      for Minerals Sustainability
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Objective: Accelerate scale-up and deployment of innovative CM & REE processes and establish the toolkit to 
compress future RD3 timelines by leveraging IDAES, CCSI and a decade of DOE CM & REE investment. 



Presentation Outline
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• The Challenge & Context
• PrOMMiS Capabilities & Project Status
• Framework Development

• Unit and Property Model Libraries
• Costing Model Libraries

• Case Study: University of Kentucky Coal Waste Pilot Process
• Case Study: Li/Co Recycling Membrane System

• Nanofiltration / Diafiltration Membrane Cascade Systems
• Conceptual Design: Flowsheet Screening with Superstructures
• Technical Risk Reduction: Robust Optimization
• Technical Risk Reduction: Model-based Design of Experiments



What are Critical Minerals & Materials (CMM)?
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Materials have high risk for supply disruption and serve an essential function in one 
or more energy technologies

https://www.energy.gov/cmm/what-are-critical-materials-and-critical-minerals 

https://www.energy.gov/cmm/what-are-critical-materials-and-critical-minerals


Challenge: 
    Clean Energy Technologies Drive Demand Growth
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SDS = Sustainable Development Scenario

Source: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary 

https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive-summary


Challenge: 
    Large Gaps in Domestic Supply Chain - REE
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• Up- and Mid-Stream capabilities are geographically concentrated in 1-3 countries
• Lack of midstream capabilities are a gap that limits 
•           growth of upstream supply & downstream manufacturing

https://www.energy.gov/policy/securing-americas-clean-energy-supply-chain Geographic concentration of supply chain stages for sintered NdFeB magnets

https://www.energy.gov/policy/securing-americas-clean-energy-supply-chain


Challenge: 
Supply Chain Vulnerability – Li-ion Batteries

• Up- and Mid-Stream capabilities are geographically concentrated in 1-3 countries
• Lack of midstream capabilities are a gap that limits 
•           growth of upstream supply & downstream manufacturing



DOE CMM Vision & Strategy
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• Build reliable, resilient, affordable, 
diverse, sustainable, and secure 
domestic critical mineral 
and materials supply chains.

• Promote safe, sustainable, economic, 
and environmentally just solutions to 
meet current and future needs.

• Support the clean energy transition 
and decarbonization of the energy, 
manufacturing, and transportation 
economies.

Vision:

https://www.energy.gov/critical-minerals-materials

https://www.energy.gov/critical-minerals-materials


Presentation Outline
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• The Challenge & Context
• PrOMMiS Capabilities & Project Status
• Framework Development
• Case Study: University of Kentucky Coal Waste Pilot Process
• Case Study: End of Life Product Recycling
• Case Study: Li/Co Recycling Membrane System

• Nanofiltration / Diafiltration Membrane Cascade Systems
• Conceptual Design: Flowsheet Screening with Superstructures
• Technical Risk Reduction: Robust Optimization
• Technical Risk Reduction: Model-based Design of Experiments



PrOMMiS: Process Optimization & Modeling 
                      for Minerals Sustainability
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Objective: Accelerate scale-up and deployment of innovative CM & REE processes and establish the toolkit to 
compress future RD3 timelines by leveraging IDAES, CCSI and a decade of DOE CM & REE investment. 



Guiding Principles & Approach
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• Urgency: Rapidly Establish Capability to Get Early Wins 
• Learn by Doing – Apply to Existing Projects (recently completed or underway)
• Don’t Reinvent the Wheel – Leverage Existing Models & Partnerships
• Partner with Active Developers

• Create A Long-Term Capability!
• Critical Materials will change over time
• Flexible, Foundational Platform
• Early Stakeholder Involvement and Well-Regarded Leadership Board

• Maximize Support & Integration with CM and other DOE R&D Portfolios
• CM Related: CMC, CMI, BIL Activities, FECM Awarded Projects
• Adjacent: Water-related (NAWI, PARETO)
• Inter-Agency: DoD Projects, USGS



Guiding Principles & Approach
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The End Goal is…



Guiding Principles & Approach
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The End Goal is…

• Compress Developmental Timeframes

• Innovation Ecosystem

• Support DOE Investments & Initiatives
• Technology Maturation
• Unlocking Different Feedstocks
• Waste Minimization



PrOMMiS High-level Execution & Capabilities
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Year 1: 
 Build capabilities for design, optimization, and scale-up specific to CM & REE processes, enabling technical risk reduction

 Evaluate landscape of emerging CM & REE production pathways & solicit input on critical industry needs/gaps

 Leverage existing multiscale modeling and optimization capabilities from CCSI & IDAES

 Ensure applicability to a range of feedstocks (e.g., mining, waste streams, and recycling end-of-life-products)

Year 2: 

• Expand unit model and costing libraries to include other established technologies to use in different case studies

• PrOMMiS will deploy computational capabilities for advanced process design, scale-up, and analysis of the CMM & REE 
process:   Techno-economic analysis, optimization, control, uncertainty quantification, and technical risk reduction through 
robust optimization approaches. 

• PrOMMiS will work directly with initial technology partners to collaboratively support scale-up and integration of novel 
technologies.



Major Accomplishments
Created Unit Operation & Property Model library (v1.0) which 
includes cost data. Successfully developed process flowsheet 
model for a University of Kentucky REE recovery pilot plant. 
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Established collaborations with key partners.

End-of-life magnet recycling model capable of selecting the 
optimal recovery pathway and most cost-effective technology 
for different feedstocks.

Demonstrate effective optimization of candidate flowsheet 
configurations (conceptual design superstructure) for the 
selected CM & REE case studies. 



Project Overview - Collaborations
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Research 
PI Tim Dittrich Rick Honaker, 

Joshua Werner Aaron Noble
Nicholas Siefert, Alison 
Fritz, Ward Burgess, Jon 

Yang, Bret Howard

Ikenna Nlebedim, 
Parans 

Paranthaman, 
Jason Pries

Research 
Focus

Sorbent/IX 
modeling & 
validation

REE recovery and 
pilot plant support

Mining and 
Economics Analysis

Experimental data and 
modeling support 

(precipitation, leaching, 
solvent extraction, etc.)

Acid Free 
Recycling of 

Magnets; 
Membrane 

solvent extraction

The team has established close collaborations with several universities:



Framework Development
• What is it?

• Libraries of models for common unit operations.
• Includes thermodynamic properties, unit operations and cost estimation.
• Different levels of rigor to support analyses from conceptual design 

through to high-fidelity simulations.

• Why do we care?
• Facilitates rapid assemble of process models from modular components.
• Will support full optimal design workflow from process synthesis to 

process control.
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A New Domain
• Need new library of models for minerals processing

• Need both current and future technologies

• Reviewed literature for REE recovery processes
• Focus on unconventional resources

• Learning by Doing
• DOE wants immediate results
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•Coal Waste Products
•Acid Mine Drainage
•Brines and Produced Water

•Phosphates and Gypsum
•End-of-Life Recycling

•Batteries
•Magnets



Unit and Property Model Libraries
• Goal: Develop a comprehensive library of models for CM & REE 

processing operations.

• First Year:
• Identify key unit operations and properties from candidate case studies.
• Focus on unconventional feedstocks:
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• Coal ash and waste
• Acid mine drainage
• Phosphates & gypsum

• Brines
• Battery recycling
• End-of-life magnets



Core Model Development

• Models (contributed to GitHub)
• Roaster (calcination)
• Leaching
• Solvent extraction
• Solid liquid separation
• Precipitation
• Thickener
• Crushing and Grinding
• Evaporation

• Property Packages:
• Case specific properties
• Integration of PhreeqC / Mintec

• WaterTAP Models
• RO
• Ion exchange
• Nanofiltration
• Electrodialysis
• Membrane Distillation



Core Model Development
• Case Study Driven

• External Stakeholders
• TBD

• Internal (NETL) Stakeholders
• Dry Fork Fly Ash (Powder River basin, WY) – REEs from coal byproducts

• Similar to University of Kentucky process
• Complex leaching process, but lots of data

• ABLE Lab – lithium from produced waters
• Lab scale testing apparatus
• Includes RO, NF and IX technologies
• External stakeholders to bring Direct Lithium Extraction technologies for testing

• Carbon products
• Complex process involving both pyro- and hydro-metallurgy
• Stakeholder concerned about releasing outside NETL



REE Costing Framework https://github.com/prommis/prommis/
tree/main/src/prommis/uky/costing

Current Framework Capabilities

• Capital & Operating Costs

• Annualized Costs & Revenue

• Membrane Capital & Operating 
Costs via WaterTAP

• Custom Costing Models

• Objectives for TEA – Net 
Present Value and Cost of 
Recovery

Ongoing PrOMMiS Integration

• Bottom-Up Costing for 
Hydrogen Decrepitation (WVU)

• Economy of Numbers (WVU)

• Costing for Li/Co diafiltration 
(ND) 

• Superstructure UI integration 
(LBNL)

• Tutorial development (NETL)

Planned Capabilities

• For March 2025:
• Operation Labor Estimation

• Tax & Environmental 
Incentives

• Byproduct Recovery Value

• For EY25:
• TEA of at least two processes

• Cost & Price UQ to 
supplement task 2.4 tools

https://github.com/prommis/prommis/tree/main/src/prommis/uky/costing
https://github.com/prommis/prommis/tree/main/src/prommis/uky/costing


PrOMMiS Costing Library
PrOMMiS Costing Library:
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Front End Loader 
(2 yd3)

Front End Loader 
(10 yd3) Bucket Elevator Jaw Crusher VSI Crusher Roll Crusher

Vibrating Screen Storage Bins Dry Ball Mill PE Tanks Steel Tanks Tank Mixer

Elevator Motor Process/Slurry 
Pump Thickener Filter Press Conveyor Roaster

Gas Scrubber
Spray Chamber 
Quencher (77k-

60k cfm)

Spray Chamber 
Quencher (60k-

230k cfm)
Chiller Solution Heater Belt Filter

BioLeach Tanks Blower Mixer Settler
HDD Recycling 
Shredder (2700 

drives/hour)

HDD Recycling 
Furnace

Hydrogen 
Decrepitation 

Furnace*

Diafiltration 
(Li/Co 

Separation)*
Nanofiltration** Reverse 

Osmosis** Ion Exchange** Membranes**

References:
1 Keim, Steven Anthony, and Naumann, Hans. Production of Salable Rare Earths Products from Coal and 
Coal Byproducts in the U.S. Using Advanced Separation Processes (Final Technical Report). United States: N. 
p., 2019. Web. doi:10.2172/1569277.
2 Honaker, Rick, Werner, Joshua, Yang, Xinbo, Zhang, Wencai, Noble, Aaron, Yoon, Roe-Hoan, Luttrell, 
Gerald, and Huang, Qingqing. Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth 
Minerals and Elements from Coal and Coal Byproducts Using Advanced Separation Technologies. 
United States: N. p., 2021. Web.
3 Honaker, Rick Q., Werner, Joshua, Nawab, Ahmad, Zhang, Wencai, Noble, Aaron, Free, Michael, and Yang, 
Xinbo. Demonstration of Scaled-Production of Rare Earth Oxides and Critical Materials from U. S. Coal-
Based Sources (Final Report). United States: N. p., 2023. Web. doi:10.2172/1971736.
4 Garrett, D.E. (1989). Chemical Engineering Economics.
5 Ames National Laboratory. (2020, March 26). It’s all part of the Grind: CMI’s new hard drive Shredder serves 
up plenty of material for recycling science. Ames Laboratory. https://www.ameslab.gov/news/it-s-all-part-of-the-
grind-cmi-s-new-hard-drive-shredder-serves-up-plenty-of-material-for 
6 Loh, H.P., Lyons, Jennifer, White, Charles W.. Process Equipment Cost Estimation Final Report. United 
States: N. P., 2002. Web.

𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑅𝑅𝑆𝑆𝑖𝑖  ∗
𝑅𝑅𝑃𝑃𝑖𝑖
𝑆𝑆𝑃𝑃𝑖𝑖

𝐸𝐸𝐸𝐸𝑝𝑝𝑖𝑖

* Bottom-up Cost Models (users can write their own custom models)             ** WaterTap library

• SC – scaled cost

• RC – reference cost

• SP – scaled parameter

• RP – reference parameter

• Exp – exponential factor

• i – ith unit cost account



Case Study:
University of Kentucky Coal Waste Pilot Process
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UKy Coal Waste Pilot Process
• What is it?

• Integrated flowsheet for extraction and separation of REEs from West 
Kentucky No. 13 coal waste.

• Integrates unit and costing models into single model of leaching and 
separation train.

• Why do we care?
• Proof-of-concept example of integrating model libraries to simulate real 

world process.
• FECM funded project with easily available data.
• Capable of optimizing process for cost and/or chemical consumption.
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Superstructure Optimization for Conceptual Design

Option I

Option II

Option I

Option II

Option III

Option IV

Option I

Option II

Option III

+

Unit Operation 1

Unit Operation 2

Unit Operation 3 Optimal Design and 
Configuration

Rapid screening

9 disjunctions
18 binary variables
 315 choices 



Superstructure Optimization for Conceptual Design

Option I

Option II

Option I

Option II

Option III

Option IV

Option I

Option II

Option III

Technology Choice 1

Technology Choice 2

Technology Choice 3

Superstructure optimization and 
technology selection for end-of-
life-products (Prof. Torres)



Superstructure Optimization for Conceptual Design

Option I

Option II

Option I

Option II

Option III

Option IV

Option I

Option II

Option III

Facility Tech. & Location
Choice 1

Facility Tech. & Location
Choice 2

Facility Tech. & Location
Choice 3



IDAES Conceptual Design Framework

• Models built using IDAES framework and process model library
• High-level representation of superstructure with disjunctions
• Automatic conversion to MINLP with Pyomo.GDP
• Gives access to rigorous, competitive MINLP solvers

I

II

I

II

III

IV

I

II

III

PrOMMiS Modeling Framework Pyomo.GDP Disjunctive Modeling General GDP Solution Approaches



Case Study:
End of Life Product Recycling
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• Data: Literature, Oak Ridge National Labs, Critical Minerals Innovation Hub 
• Example for HDDs:

Acid-free 
dissolution

Filtration 
1

REE Recovery
Cu(NO3)2 (aq) H2O

Copper 
Valorization

KHSO4 (aq)

Insoluble Cu-Fe 
mixed oxide residue

Cu(NO3)2 (aq)

CaSO4

Insoluble 
mixture of iron 

oxides

Precipitation/
Oxidation

NH4OH

Selective 
Dissolution

H2C2O4

Filtration 
2

H2O

Calcination

RE 
oxalatesFiltrate

REOs 
(Purity ≥  99.5%)

Shredder

Industrial Shredder
(Disassembly Pathway 2)

EOL 
HDDs

Shredded 
HDDs

Filtrate containing 
(NH4)3Fe(C2O4)3

Wastewater 
Treatment

CaCl2, Ca(OH)2 (aq)
Fe(OH)3, CaC2O4

NH4Cl (aq)

Scanning of HDD 
shipment into an 

inventory 
database

Vibratory 
bowl feeder 

for alignment

Identification 
and Sorting Disassembly

Metrology 
Station

Rest of 
HDD

REPM

Automated Disassembly 
(Disassembly Pathway 1)

EOL 
HDDs

REE 
Recovery

Blank 
Node

ORNL- Pub133587 
Patent US 11,230,752 B2 

Iowa U: Patent US 10,648,063 B2 Dissolution and separation of rare earth metals
CMI: Prodius et al, ACS Sus. Chem Eng., 2020.: Process applied to e-waste
CMI: Chowdury et al, ACS Sus. Chem. Eng. , 2021 TEA from REE Swarf

EOL HDDs swarf

H2 
decrepitation  

HDDs

Shredded 
HDDs

Shredded 
HDDs

• Expand 
literature search

• Mix & Match 
processes

Case Study – End of Life Product Recycling



• Most (experimental) efforts focus 
on advancing part of the REE 
processing

• How to combine efforts from 
different groups to find the best 
processing pathway?

=> Screening via superstructure 
optimization for conceptual 

2. Literature search: Processing Pathways

Option I

Option II

Option I

Option II

Option III

Option IV

Option I

Option II

Option III

Technology Choice 1

Technology Choice 2

Technology Choice 3

(Figure: courtesy Prof. Laird)

Technologies being developed by 
different research groups

Processing 
sequence 



3. EoL Superstructure
• Organize existing data in processing stages, identify competitive technology options at each stage
• Identify new connections 
• Example for HDDs:

CMI process• Each block is a 
flowsheet itself

Acid-free 
dissolution

Filtration 
1

 y
Cu(NO3)2 (aq) H2O

Copper 
Valorization

KHSO4 (aq)

Insoluble Cu-Fe 
mixed oxide residue

Cu(NO3)2 (aq)

CaSO4

Insoluble 
mixture of iron 

oxides

Precipitation/
Oxidation

NH4OH

Selective 
Dissolution

H2C2O4

Filtration 
2

H2O

Calcination

RE 
oxalatesFiltrate

REOs 
(Purity ≥  99.5%)

 
  

 
 

Filtrate containing 
(NH4)3Fe(C2O4)3

Wastewater 
Treatment

CaCl2, Ca(OH)2 (aq)
Fe(OH)3, CaC2O4

NH4Cl (aq)

   
   

 

 
  

 

 
 

 

    
  

  

 

& calcination



• Superstructures are modeled as networks • Technology options  nodes  binary 
variable y =1 if in optimal pathway

• Arcs: flows of each species

• Allowed connections: logical constraints
• Objective function: NPV  

• CAPEX/OPEX: TEA in the literature or 
own: APEA, Bhattacharya’s group  

• Framework: Seider et al. 
• Currently updating withTask 2.2 developments

• Inlet/ Outlet flows  MB from simulations

3. EoL Superstructure Modeling

& calcination



4. Process flowsheet development and costing- 
Example

24. Lyman, J.W., Palmer, G.R.: Recycling of Rare Earths and Iron from NdFeB Magnet Scrap. High Temperature Materials and Processes. 11, 175–188 
(1993). https://doi.org/10.1515/HTMP.1993.11.1-4.175

Leachate from 
previous (acid) 

dissolution

Precipitation 
Nd-Na salt

Precipitation 
Nd oxalate Calcination 

Nd oxalate

Nd-Na salt

Fe rich 
solution

Precipiation 
Fe 

(NH4)2SO4

Nd2O3

• Initial 
simulations 
in Aspen 
Plus 



5. Case Study: Recovery REO from HDDs
(C. Laliwala, AI Torres, proceedings FOCAPD 2024)

• Optimal pathway 

• Base case: plant recycles 60 % 
of all available EOL HDDs in 
the U.S. each year. 

• Optimal pathway:
• Shredding 
• Acid Free dissolution  

• NPV negative

& calcination



• Optimal solution for different collection rates (from future and past wastes) and REO prices; 
 

• ONL Shredding + CMI acid-free dissolution always optimal pathway

5. Case Study: Recovery REO from HDDs
(C. Laliwala, AI Torres, proceedings FOCAPD 2024)



• Slightly different superstructure; 

• Base case: plant recycles 10 % 
of all EOL EVs and HEVs in the 
U.S. each year. 

• Optimal pathway:
• Automatic disassembly
• Hydrogen decrepitation
• Acid Free dissolution  

• NPV positive

5. Case Study: Recovery REO from EV/HEV
(C. Laliwala, AI Torres, proceedings ESCAPE/PSE 2024)



5. Case Study: Recovery REO from EV/HEV
(C. Laliwala, AI Torres, proceedings ESCAPE/PSE 2024)

• Automatic disassembly, 
hydrogen decrepitation, 
acid-free dissolution were 
always selected as optimal

Base Case Base Case



Advanced Optimization Capabilities
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FWP subtask 2.3 



How to systematically explore CM process 
intensification with membranes?

Lair, Ouimet, Dougher, Boudouris, Dowling, Phillip, Annual Reviews in Chemical Engineering (2024), accepted.



Case Study: Li/Co Membrane System
What is it?     Optimization membrane separation cascade to fractionate 
Li and Co ions (e.g., battery recycling) as an alternative to extraction 
cascades

• Reduce the use of environmentally challenging solvents
• More flexible and efficient separations

Why do we care?     Highlights benefits of optimization
• Identifies new designs and design rules
• Accelerates process scale-up
• Quantifying separation trade-offs, informs materials and device targets

43



Motivation: Lithium/Cobalt Fractionation

optimal trade-offs, material property targets

44

Optimize

10 stages

1 stage

I
II

III

Isotropic cascades with 

α=
SLi 
SCo

=
1.3
0.5

3 stages

III

superstructure

I

II

44

performance data & 
specifications

Model

Wamble, Eugene, Phillip, Dowling (2022), ACS Sustainable Chemistry & Engineering



Case Study: Li/Co Membrane System
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Prior work:
• Demonstrates how optimization identifies new designs, informs material targets
• Bespoke and one-off implementation, 2+ years of student effort

Optimization-based flowsheet screening with superstructures:
• Automated mixed integer flowsheeting screening, demonstrated on Li/Co example
• [Ongoing] U. Kentucky flowsheet extraction with multiple products and sequencing

Technical risk reduction:
• Designed processes that are robust to uncertainty (e.g., membrane performance, feed variability)
• [Ongoing] Extend to U. Ky. components, improve design realism, incorporate detailed costing
• [Ongoing] Integrate uncertainty quantification and DoE with robust optimization



Example: Membrane Separation of Li-Co

• Given known (maybe uncertain) feed 
characteristics and desired product 
specifications

• Superstructure formulation to rapidly 
determine the optimal configuration
(# of stages, feed, diafiltrate, reflux 
connectivity)

• Advantage of framework
• Intuitive to modeler
• Avoid zero-flow issue
• Solution with existing framework

Figure 2: Superstructure of a generalized membrane cascade

Source: Ovalle D, Tran N, Laird CD, Grossman IE. Optimal Membrane Cascade Design for Critical 
Mineral Recovery Through Logic-based Superstructure Optimization. FOCAPD (2023)



Case Study: Li/Co Membrane System
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Prior work:
• Demonstrates how optimization identifies new designs, informs material targets
• Bespoke and one-off implementation, 2+ years of student effort

Optimization-based flowsheet screening with superstructures:
• Automated mixed integer flowsheeting screening, demonstrated on Li/Co example
• [Ongoing] U. Kentucky flowsheet extraction with multiple products and sequencing

Technical risk reduction:
• Designed processes that are robust to uncertainty (e.g., membrane performance, feed variability)
• [Ongoing] Extend to U. Ky. components, improve design realism, incorporate detailed costing
• [Ongoing] Integrate uncertainty quantification and DoE with robust optimization



Technical Risk Reduction 
Chrysanthos Gounaris, Alex Dowling, Anca Ostace

48

FWP subtask 2.4 



Mixing before each stage Mixing before each tube

[1] Wamble, NP, Eugene, EA, Phillip, WA, Dowling, AW. Optimal Diafiltration Membrane Cascades Enable Green Recycling of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 10(37):12207–12225, 2022.
[2] Ultrafiltration Membrane Skids. Complete Filtration Resources. https://www.gotocompletefiltration.com/wastewater-treatment/ultrafiltration-membrane-skids-2/

(Based on original model from [1])

Model extensions:
• Adjustable number of membrane stages and tube elements using 

IDAES unit models

• Added precipitator units to isolate Co/Li products and recycle diafiltrate 
streams

• Multi-period model to handle varying process conditions over time

• Alternative superstructures for mixing of flows before each stage 
versus before each tube

Stage Connectivity Balances

Permeate Mass Balances

Retentate Mass Balances

Membrane Performance 
Equations

Lithium Recovery ≥ Spec

Flow Rates ≥ 0

Cobalt Recovery

Problem Formulation

Example 
membrane 

stage

Interchangeable 
objectives

[2]

Multi-Stage Diafiltration Model



Most Critical Tube 
Location

Industrial processes must be able to perform 
satisfactorily in light of uncertainties.

Potential Sources of Uncertainty
• Location and rate of membrane fouling
• Feedstock flow rate and solute concentrations
• Membrane manufacturing variation

• Seek to ensure optimal performance for up to N 
membrane tubes underperforming 

Two types of DoF in robust process design:
• Design DoF (set during construction):

• Membrane stage length

• Control DoF (adjustable during operation):
• Flows (feed, diafiltrate, recycle, products)

[3] Isenberg, NM, Akula, P, Eslick, JC, Bhattacharyya, D, Miller, DC, Gounaris, CE. A generalized cutting-set approach for nonlinear robust optimization in process systems 
engineering. AIChE Journal, 67(5):e17175. 2021.
[4] Isenberg, NM, Sherman, JA, Siirola, JD, & Gounaris, CE. PyROS: The Pyomo Robust Optimization Solver. Forthcoming. 2024.

Pyomo Robust Optimization Solver (PyROS) 
can obtain robust optimal solutions that are 
feasible for all realizations of uncertainty[3,4]

Pareto Front 
Comparisons of 
Robust Feasible 
Designs
(3 Stages x 10 Tubes/Stage)

Deterministic Model 
Flowsheet

(Stage Length: 753m)

Robust Feasible for
 50% Underperforming Tube 

Flowsheet
(Stage Length: 785m)

Robust Optimization



Model Size
Worst-Case Cobalt Recovered

1 
Underperforming 

Tube

2 
Underperforming 

Tubes

3 
Underperforming 

Tubes

Small
(1 stage x 3 tubes)

51.1% 30.1% Rob. Inf.

Medium
(2 stages x 5 tubes)

69.5% 62.6% 55.4%

Large
(3 stage x 10 tubes)

81.4% 79.4% 77.4%

Model Settings:
• Tube-mixing configuration
• ≥ 60% lithium recovery requirement
• 50% flux decrease in underperforming tubes

Increasing number of underperforming 
tubes for robust feasible designs comes 
with a cost of reduced cobalt recovery

Increasing size of 
membrane cascades 
allows for more cobalt 
to be recovered

Robust Optimization Across System Sizes



Operational flexibility to achieve requirements 
under changing operating conditions.

Case Study: Upstream plans to increase feed 
flow rate by 50%. Can we cope with it?
• Base case design does not possess sufficient 

operational DoF to adjust product/recycle flows 
and cannot maintain lithium recovery requirements

• Stage-Level Mixing and Tube-Level Mixing 
configurations can adjust feed/product stream 
locations to adapt to change.

1   2   3   4   5   6   7   8
Ramp Up Period

100
𝑚𝑚3

ℎ𝑟𝑟

150
𝑚𝑚3

ℎ𝑟𝑟

1st period 8th period

Evolution of Operation
(80% Li Recovery)

Feed flow increase reduces Co/Li recovery.

More flexible designs maintain product 
recoveries closer to the initial performance.

Operational Flexibility Over Multiple Periods

…



Prior
Knowledge

(Preliminary) 
Data

Model(s) Parameter 
Estimation

Sensitivity & 
Uncertainty 

Analysis

Model-Based 
Design of 

Experiments

Wang, J. & Dowling A. W. (2022). AIChE Journal

Which model(s) are most 
justified by the data?

What is the 
uncertainty in the 

fitted model 
parameters?

What is the 
uncertainty in 

model predictions?

What data are most 
informative to reduce 
model uncertainty?

Sequential Design of Experiments



Open-Source Platform

• Website: https://idaes.org/research/application-areas/ 
• GitHub repository:

• https://github.com/prommis/prommis 

• Documentation: 
• https://prommis.readthedocs.io/en/latest/ 

• Bi-Weekly Software Engineering
teleconferences coordinating development

• Targeting quarterly internal/public releases
• IPMP in progress for fully open-source license
• Overview video: coming soon!

PROMMIS Contributions

Download 
idaes-pse 
repository

Model 
Development

Open GitHub 
PR Merge Code

Get prommis
Follow 
standards and 
examples

Local system
Build and test 
models

Contribute 
models, tests, 
and examples 
to prommis

Rigorous testing 
and structural 
analysis

Path 2: create GitHub repository and make idaes-pse and prommis a dependency

Path 1: contribute to prommis repository
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Usability

Leverage NAWI/WaterTAP UI infrastructure
• Define key model inputs and outputs
• Distribute UI with PROMMIS flowsheets
• Parallel parameter sweeps (sensitivity analysis)

Gather requirements for UIs specific to WT
• E.g., conceptual design model configuration

Leverage IDAES core flowsheet visualization
• View flowsheet diagrams
• PROMMIS models <- new diagnostics 

capabilities

Assist team with Jupyter Notebooks and online 
documentation
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Technical Risk Reduction 
Chrysanthos Gounaris, Alex Dowling, Anca Ostace
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FWP subtask 2.4 



Mixing before each stage Mixing before each tube

[1] Wamble, NP, Eugene, EA, Phillip, WA, Dowling, AW. Optimal Diafiltration Membrane Cascades Enable Green Recycling of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 10(37):12207–12225, 2022.
[2] Ultrafiltration Membrane Skids. Complete Filtration Resources. https://www.gotocompletefiltration.com/wastewater-treatment/ultrafiltration-membrane-skids-2/

(Based on original model from [1])

Model extensions:
• Adjustable number of membrane stages and tube elements using 

IDAES unit models

• Added precipitator units to isolate Co/Li products and recycle diafiltrate 
streams

• Multi-period model to handle varying process conditions over time

• Alternative superstructures for mixing of flows before each stage 
versus before each tube

Stage Connectivity Balances

Permeate Mass Balances

Retentate Mass Balances

Membrane Performance 
Equations

Lithium Recovery ≥ Spec

Flow Rates ≥ 0

Cobalt Recovery

Problem Formulation

Example 
membrane 

stage

Interchangeable 
objectives

[2]

Multi-Stage Diafiltration Model



Most Critical Tube 
Location

Industrial processes must be able to perform 
satisfactorily in light of uncertainties.

Potential Sources of Uncertainty
• Location and rate of membrane fouling
• Feedstock flow rate and solute concentrations
• Membrane manufacturing variation

• Seek to ensure optimal performance for up to N 
membrane tubes underperforming 

Two types of DoF in robust process design:
• Design DoF (set during construction):

• Membrane stage length

• Control DoF (adjustable during operation):
• Flows (feed, diafiltrate, recycle, products)

[3] Isenberg, NM, Akula, P, Eslick, JC, Bhattacharyya, D, Miller, DC, Gounaris, CE. A generalized cutting-set approach for nonlinear robust optimization in process systems 
engineering. AIChE Journal, 67(5):e17175. 2021.
[4] Isenberg, NM, Sherman, JA, Siirola, JD, & Gounaris, CE. PyROS: The Pyomo Robust Optimization Solver. Forthcoming. 2024.

Pyomo Robust Optimization Solver (PyROS) 
can obtain robust optimal solutions that are 
feasible for all realizations of uncertainty[3,4]

Pareto Front 
Comparisons of 
Robust Feasible 
Designs
(3 Stages x 10 Tubes/Stage)

Deterministic Model 
Flowsheet

(Stage Length: 753m)

Robust Feasible for
 50% Underperforming Tube 

Flowsheet
(Stage Length: 785m)

Robust Optimization



Model Size
Worst-Case Cobalt Recovered

1 
Underperforming 

Tube

2 
Underperforming 

Tubes

3 
Underperforming 

Tubes

Small
(1 stage x 3 tubes)

51.1% 30.1% Rob. Inf.

Medium
(2 stages x 5 tubes)

69.5% 62.6% 55.4%

Large
(3 stage x 10 tubes)

81.4% 79.4% 77.4%

Model Settings:
• Tube-mixing configuration
• ≥ 60% lithium recovery requirement
• 50% flux decrease in underperforming tubes

Increasing number of underperforming 
tubes for robust feasible designs comes 
with a cost of reduced cobalt recovery

Increasing size of 
membrane cascades 
allows for more cobalt 
to be recovered

Robust Optimization Across System Sizes



Operational flexibility to achieve requirements 
under changing operating conditions.

Case Study: Upstream plans to increase feed 
flow rate by 50%. Can we cope with it?
• Base case design does not possess sufficient 

operational DoF to adjust product/recycle flows 
and cannot maintain lithium recovery requirements

• Stage-Level Mixing and Tube-Level Mixing 
configurations can adjust feed/product stream 
locations to adapt to change.

1   2   3   4   5   6   7   8
Ramp Up Period

100
𝑚𝑚3

ℎ𝑟𝑟

150
𝑚𝑚3

ℎ𝑟𝑟

1st period 8th period

Evolution of Operation
(80% Li Recovery)

Feed flow increase reduces Co/Li recovery.

More flexible designs maintain product 
recoveries closer to the initial performance.

Operational Flexibility Over Multiple Periods

…



Prior
Knowledge

(Preliminary) 
Data

Model(s) Parameter 
Estimation

Sensitivity & 
Uncertainty 

Analysis

Model-Based 
Design of 

Experiments

Wang, J. & Dowling A. W. (2022). AIChE Journal

Which model(s) are most 
justified by the data?

What is the 
uncertainty in the 

fitted model 
parameters?

What is the 
uncertainty in 

model predictions?

What data are most 
informative to reduce 
model uncertainty?

Sequential Design of Experiments



Open-Source Platform

• Website: https://idaes.org/research/application-areas/ 
• GitHub repository:

• https://github.com/prommis/prommis 

• Documentation: 
• https://prommis.readthedocs.io/en/latest/ 

• Bi-Weekly Software Engineering
teleconferences coordinating development

• Targeting quarterly internal/public releases
• IPMP in progress for fully open-source license
• Overview video: coming soon!

PROMMIS Contributions

Download 
idaes-pse 
repository

Model 
Development

Open GitHub 
PR Merge Code

Get prommis
Follow 
standards and 
examples

Local system
Build and test 
models

Contribute 
models, tests, 
and examples 
to prommis

Rigorous testing 
and structural 
analysis

Path 2: create GitHub repository and make idaes-pse and prommis a dependency

Path 1: contribute to prommis repository
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Usability

Leverage NAWI/WaterTAP UI infrastructure
• Define key model inputs and outputs
• Distribute UI with PROMMIS flowsheets
• Parallel parameter sweeps (sensitivity analysis)

Gather requirements for UIs specific to WT
• E.g., conceptual design model configuration

Leverage IDAES core flowsheet visualization
• View flowsheet diagrams
• PROMMIS models <- new diagnostics 

capabilities

Assist team with Jupyter Notebooks and online 
documentation



Leaching Summary
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Feed Composition Data Used

• Coal Composition: UKy Final Report Appendix E, Tables 2 & 6

Model Equations and Data for Unit Process

• Shrinking Core kinetic model
• Operating Conditions: UKy Final Report Tables 3.7.1 & 3.7.2
• Elemental Recovery: UKy Final Report Figures 3.7.4, 3.7.5, & 3.7.6a

Validation Data Used

• None available

Additional Data Required

• Additional experimental data for fitting and validation

NETL Team (Andrew Lee)



Solvent Extraction Summary
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WVU Team (Prof. Debangsu Bhattacharyya)

Feed Composition Data Used
• Aqueous feed: REESim excel file, buffer tank of cleaner circuit, concentration of components
• Organic feed: REESim excel file, stripping operation of cleaner circuit, concentration of components
• Components considered: Al, Ca, Fe, Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy
• Extractant considered: DEHPA

Model Equations and Data for Unit Process

• Komulanein et. al., Hydrometallurgy, 81, 52-61, 2006, Lyon et. al., Industrial and Engineering Chemistry Research, 56, 1048-1056, 2017, and several 
other papers

• REESim excel file, Phase-1 report, Final phase report, 
• Extraction percentage, extractant dosage and pH variation data, feed and product concentration, etc.

Validation Data Used

• Aqueous and organic streams concentration values from REESim excel file, Phase-1 report, and final phase report

Additional Data Required

• Following data are lacking in general in the literature in this area including UKy literature- studies on emulsification, if any, density gradients in the 
mixer/settler, axial and radial mixing, mass transfer rate, studies on interfaces and continuous and dispersed phase distributions, and ion 
concentration variation, also dynamic data are mostly lacking.



Solvent Extraction Summary
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•First-principles, dynamic model of the counter-current multi-stage, multi-component solvent extraction system followed by stripping
•Model results compare well with the data from the UKy pilot plant data.



Solvent Extraction Summary
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• Using the UKy pilot plant data, a data-driven model for the distribution coefficient as a function of pH and extractant 
concentration.

• Future work will include development of higher fidelity models of the solvent extraction system, inclusion of more 
solvent materials in the database, validation of the dynamic model of the solvent extraction system, control system 
development for feed and other disturbance rejection, and development of a model for the membrane solvent extraction 
system with validation using the NETL in-house data.



Precipitation Summary
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NETL Team (Alejandro Garciadiego)

Feed Composition Data Used

• Input is fed from the solvent extraction system
• Output would need to be validated from inputs and specific pH, acid dosage, 

and reaction time

Model Equations and Data for Unit Process

• Equilibrium reactor with fixed partition coefficients
• Partition coefficients calculated from data in the literature 
• A Hybrid Experimental and Theoretical Approach to Optimize Recovery of 

Rare Earth Elements from Acid Mine Drainage Precipitates by Oxalic Acid 
Precipitation, Y. Wang, P. Ziemkiewicz, and A. Noble, Minerals 2022, 12, 236

• One problem is that since it is not a multivariable study, the surrogate model 
can only be created for one variable

A Hybrid Experimental and Theoretical Approach to Optimize Recovery of Rare 
Earth Elements from Acid Mine Drainage Precipitates by Oxalic Acid 
Precipitation, Y. Wang, P. Ziemkiewicz, and A. Noble, Minerals 2022

Surrogate model results



Precipitation Summary (Model Validation)
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Validation Data Used

• The validation test are based on partition calculated from data
• The model is validated with this data as the surrogate model being built will be 

based on this data as it is a full data base
• Paper recovery %

A Hybrid Experimental and Theoretical Approach to Optimize Recovery of Rare 
Earth Elements from Acid Mine Drainage Precipitates by Oxalic Acid 
Precipitation, Y. Wang, P. Ziemkiewicz, and A. Noble, Minerals 2022

Additional Data Required

To build the surrogate and test with UK data, we will require data for:
• recovery vs pH, 
• recovery vs acid dosage 
• recovery vs reaction time
Need multivariable data set where (pH, dosage, reaction time, contaminants) are 
varied 

NETL Team (Alejandro Garciadiego)



REE Oxalate Roaster Summary

72

NETL Team (Jinliang Ma)

Feed Composition Data Used

• Solid feed: PrecipitateParametersData, with optional moisture content
• Gas feed: Generic ideal gas mixture (N2, O2, CO2, H2O)

Model Equations and Data for Unit Process

• Currently 100% conversion to oxides
• Full species mass balance and energy balance
• User specified solid recovery (default 95%)

Validation Data Used

• UKy REESim excel spreadsheet

Additional Data Required

• Conversion and recovery for individual species as functions of temperature and other 
operation conditions, if available

• 𝑅𝑅𝐸𝐸2 𝑆𝑆2𝑂𝑂4 3 � 𝑥𝑥𝐻𝐻2𝑂𝑂 + 1.5𝑂𝑂2 → 
𝑅𝑅𝐸𝐸2𝑂𝑂3 + 6𝑆𝑆𝑂𝑂2(𝑔𝑔) + 𝑥𝑥𝐻𝐻2𝑂𝑂 𝑔𝑔

• Impurities:

•  𝐹𝐹𝐹𝐹2 𝑆𝑆2𝑂𝑂4 3 � 2𝐻𝐻2𝑂𝑂 → 𝐹𝐹𝐹𝐹2𝑂𝑂3
• 𝐴𝐴𝐴𝐴2 𝑆𝑆2𝑂𝑂4 3 � 𝐻𝐻2𝑂𝑂 → 𝐴𝐴𝐴𝐴2𝑂𝑂3



Ion Exchange Summary
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Sandia NL Team (Soraya Rawlings)

Feed Composition Data Used

• Leaching process outlet from UKy flowsheet

Model Equations and Data for Unit Process

• Modified version of unit model from WaterTAP platform
• Data for unit operation and resin from references [1] and [2]

Validation Data Used

• No validation available, but model was tested using batch experimental data 
from literature (references in unit model)

Additional Data Required

• No additional data required

References: 
[1] S. Mondal, A. Ghar, A.K. Satpati, P. Sinharoy, 
D. K. Singh, J.N. Sharma, T. Sreenivas, and V. 
Kain, Recovery of rare earth elements from 
coal fly ash using TEHDGA impregnated resin, 
Hydrometallurgy 185, 2019, 93-101. 

[2] Dupont Amberlite XAD(TM)7HP Polymeric 
Adsorbent. Product Data Sheet Polymeric 
Adsorbent. February 2023. URL: 

https://www.dupont.com/content/dam/dupo
nt/amer/us/en/water-
solutions/public/documents/en/IER-AmberLite-
XAD7HP-PDS-45-D00782-en.pdf

https://github.com/watertap-org/watertap/blob/main/watertap/unit_models/ion_exchange_0D.py
https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLite-XAD7HP-PDS-45-D00782-en.pdf
https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLite-XAD7HP-PDS-45-D00782-en.pdf
https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLite-XAD7HP-PDS-45-D00782-en.pdf
https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLite-XAD7HP-PDS-45-D00782-en.pdf


PrOMMiS Subtask 2.2: CM & REE Process Cost 
Estimation
Brandon Paul, Miguel Zamarripa, Debangsu Bhattacharyya, Alison Fritz
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Bottom-Up Costing Approach

• Missing data or capital costing correlations not available for required equipment 
sizes and process performance. 

• New technologies – TRL < 3, process technology/process do not exist.  
• Leverage existing data to build capital cost based on unit operations in the process 

or manufacturing steps (i.e., Solvent extraction: vessel, column hydraulics, etc. )
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𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �
𝑖𝑖=1

𝑛𝑛

𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑝𝑝𝑎𝑎𝑖𝑖 +  𝑆𝑆𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝

𝑆𝑆𝑝𝑝𝑎𝑎𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑝𝑝𝑎𝑎𝑖𝑖 =  𝑆𝑆𝑚𝑚𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑚𝑚𝑖𝑖 + 𝑆𝑆𝑚𝑚𝑝𝑝𝑎𝑎𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑝𝑝𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖 + 𝑆𝑆𝑚𝑚𝑝𝑝𝑙𝑙𝑡𝑡𝑙𝑙𝑝𝑝𝑖𝑖

𝑆𝑆𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝 =
%𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝

100 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Cost for processing components and core equipment

Penalize materials of constructions and design factors. 

Calculate indirect costs (based on existing vendor 
quotes)



Bottom-Up Costing Approach: Economy of 
Numbers
• For a comprehensive cost estimate and future 

profitability of novel/First-Of-A-Kind (FOAK) 
equipment, it is imperative to factor in the 
economy of number which affects the labor costs.

• Due to consistent proficiency improvement, labor 
hours reduce as the cumulative production 
quantity rises.

• Following a preliminary CAPEX and OPEX estimate 
for a hydrogen decrepitation furnace unit, a 
comprehensive bottom-up cost estimate is 
underway.
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CM/REE Costing Framework
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https://github.com/prommis/prommis/tree/main/src/prommis/uky/costing

Variable Definition Expression Units

BEC Bare Erected Cost
𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐹𝐹𝑠𝑠 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 = 𝑛𝑛𝑐𝑐. 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝐹𝐹𝑛𝑛𝑐𝑐 ∗  𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑛𝑛𝑠𝑠𝐹𝐹 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 ∗

𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴𝐹𝐹𝑠𝑠 𝑒𝑒𝑠𝑠𝑟𝑟𝑠𝑠𝑚𝑚𝐹𝐹𝑐𝑐𝐹𝐹𝑟𝑟
𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑛𝑛𝑠𝑠𝐹𝐹 𝑒𝑒𝑠𝑠𝑟𝑟𝑠𝑠𝑚𝑚𝐹𝐹𝑐𝑐𝐹𝐹𝑟𝑟

𝛼𝛼

∗
𝑟𝑟𝐴𝐴𝑐𝑐𝑓𝑓𝑠𝑠ℎ𝐹𝐹𝐹𝐹𝑐𝑐 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐−𝑦𝑦𝐹𝐹𝑠𝑠𝑟𝑟 𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟
𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑟𝑟𝐹𝐹𝑛𝑛𝑠𝑠𝐹𝐹 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐−𝑦𝑦𝐹𝐹𝑠𝑠𝑟𝑟 𝑟𝑟𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟

Million $

TPC Total Plant Cost 𝑇𝑇𝑃𝑃𝑆𝑆 = 𝐵𝐵𝐸𝐸𝑆𝑆 + 𝑒𝑒𝑛𝑛𝑠𝑠𝑐𝑐𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑐𝑐𝑒𝑒𝑐𝑐𝑛𝑛 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 + 𝑐𝑐𝑐𝑐ℎ𝐹𝐹𝑟𝑟 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠 Million $

TOC Total Overnight Capital 𝑇𝑇𝑂𝑂𝑆𝑆 = 𝑇𝑇𝑃𝑃𝑆𝑆 + 𝑂𝑂𝑓𝑓𝑛𝑛𝐹𝐹𝑟𝑟′𝑠𝑠 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 (e.g. royalties, preproduction, inventory, financing) Million $

TASC Total As Spent Capital 𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑂𝑂𝑆𝑆 ∗ 1.144 Million $

Annualized 
Cost

Annualized Capital 
Cost

𝐴𝐴𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠𝐴𝐴𝑒𝑒𝐴𝐴𝐹𝐹𝑠𝑠 𝑆𝑆𝑐𝑐𝑠𝑠𝑐𝑐 = 0.1002 ∗ 𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆 Million $/yr

Fixed O&M Cost [MM$/yr] Notes

Annual Labor (split into 
Operating and Technical labor)

𝐴𝐴𝑠𝑠𝑙𝑙𝑐𝑐𝑟𝑟 𝑟𝑟𝑠𝑠𝑐𝑐𝐹𝐹 ∗ 𝑐𝑐𝑒𝑒𝐹𝐹𝑟𝑟𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠 𝑒𝑒𝐹𝐹𝑟𝑟 𝑠𝑠ℎ𝑒𝑒𝑟𝑟𝑐𝑐 ∗
𝑠𝑠ℎ𝑒𝑒𝑟𝑟𝑐𝑐𝑠𝑠 𝑒𝑒𝐹𝐹𝑟𝑟 𝑠𝑠𝑠𝑠𝑦𝑦 ∗ 𝑐𝑐𝑒𝑒𝐹𝐹𝑟𝑟𝑠𝑠𝑐𝑐𝑒𝑒𝑛𝑛𝑔𝑔 𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠 𝑒𝑒𝐹𝐹𝑟𝑟 𝑦𝑦𝐹𝐹𝑠𝑠𝑟𝑟 ∗

1 + 𝐴𝐴𝑠𝑠𝑙𝑙𝑐𝑐𝑟𝑟 𝑙𝑙𝑒𝑒𝑟𝑟𝑠𝑠𝐹𝐹𝑛𝑛  

Maintenance & Gen. Materials 2% of TPC

Quality Assurance & Control 10% of Annual Operating Labor

Sales, Patenting & Research 0.5% of Total Revenue

Admin & Support Labor 20% of Annual Operating Labor

Property Taxes & Insurance 1% of TPC

Membrane Materials Function of area; calculated by WaterTAP

Variable O&M Cost [MM$/yr] Notes

Consumables 𝑟𝑟𝐴𝐴𝑐𝑐𝑓𝑓𝑟𝑟𝑠𝑠𝑐𝑐𝐹𝐹 ∗ 𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝐹𝐹 OR 𝑓𝑓𝑠𝑠𝑠𝑠𝑐𝑐𝐹𝐹 𝑟𝑟𝐴𝐴𝑐𝑐𝑓𝑓𝑟𝑟𝑠𝑠𝑐𝑐𝐹𝐹 ∗ 𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑐𝑐𝑠𝑠𝑠𝑠𝐴𝐴 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐

- Power requirements $0.07/kWh; can specify efficiency %, defaults to 85%

- Waste disposal costs Solid waste, precipitate waste, dust & volatiles

- Other chemicals Water, diesel, bioleaching solution, H2SO4, natural gas 
for roasting, reagents for precipitation

Land Ownership Leasing costs per year

Plant Overhead 20% of Total Fixed + Consumables + Land Ownership

O&M Cost Calculations

Levelized Cost of Recovery ( $
𝑘𝑘𝑘𝑘−𝑎𝑎𝑖𝑖𝑝𝑝𝑝𝑝) = Levelized capital cost + Levelized annual fixed

          O&M cost + Levelized annual variable O&M cost + Levelized REE transport cost

Capital Cost and Project Cost Calculations

https://github.com/prommis/prommis/tree/main/src/prommis/uky/costing


Supported Unit Operations
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Equipment Type Coefficient Exponent Process Parameter Units Source
Front End Loader (2 yd3) 147400 1 Number of Units dimensionless 3
Front End Loader (10 yd3) 945700 1 Number of Units dimensionless 3
Bucket Elevator 322000 1 Number of Units dimensionless 2
Jaw Crusher 651 1.25 Power Draw hp 2
VSI Crusher 3247 0.68 Power Draw hp 3
Roll Crusher 1120 0.8484 Power Draw hp 2
Vibrating Screen 1002 0.9093 Screen Area ft2 2
Storage Bins 4441 0.6185 Storage Capacity ton 2
Dry Ball Mill 35000 0.556 Power Draw hp 2
PE Tanks 1.3812 0.9492 Storage Capacity gal 2
Steel Tanks 179 0.5624 Storage Capacity gal 3
Tank Mixer 10640 0.564 Power Draw hp 2
Elevator Motor 1719.5 0.6592 Power Draw hp 2
Process/Slurry Pump 2152 0.3814 Feed Rate gal/min 2
Thickener 280 0.8023 Thickener Area ft2 2
Filter Press 6068 0.72 Filter Volume ft3 2
Conveyor 2092 0.5491 Throughput ton/hr 2
Roaster 390000 0.48 Heat Input MBTU/hr 2
Gas Scrubber 6.6039 0.9414 Gas Rate ft3/min 2
Spray Chamber Quencher (7000-60000 cfm) 23835 0.11400 Gas Rate ft3/min 5
Spray Chamber Quencher (60000-230000 cfm) 914.53 0.4108 Gas Rate ft3/min 5
Chiller 97585 0.6 Heat Input MBTU/hr 2
Solution Heater 25929 0.953 Heat Input MBTU/hr 2
Belt Filter 207819 0.249152 Throughput ton/hr 3
BioLeach Tanks 2405 0.4203 Storage Capacity gal 4
Blower 197 0.4625 Gas Rate ft3/min 4
Mixer Settler 9182 0.45 Volume gal 2
HDD Recycling Shredder (2700 drives/hour) 50000 1 Number of Units dimensionless 6
HDD Recycling Furnace (Hydrogen Decrepitation) 64723 0.6197 Heat Input MBTU/hr 7

• Sourced from Uky REE Recovery Reports 2,3,4 and 
literature5,6,7

• Fit capital cost correlations in the form

 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 ∗ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑪𝑪𝑪𝑪𝑪𝑪𝑷𝑷𝑬𝑬𝑬𝑬𝑬𝑬𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

• Membranes (e.g. nanofiltration, reverse osmosis, ion 
exchange) costed via WaterTAP

2 Keim, Steven Anthony, and Naumann, Hans. Production of Salable Rare Earths 
Products from Coal and Coal Byproducts in the U.S. Using Advanced Separation 
Processes (Final Technical Report). United States: N. p., 2019. Web. 
doi:10.2172/1569277.

3 Honaker, Rick, Werner, Joshua, Yang, Xinbo, Zhang, Wencai, Noble, Aaron, Yoon, 
Roe-Hoan, Luttrell, Gerald, and Huang, Qingqing. Pilot-Scale Testing of an Integrated 
Circuit for the Extraction of Rare Earth Minerals and Elements from Coal and Coal 
Byproducts Using Advanced Separation Technologies. United States: N. p., 2021. Web.

4 Honaker, Rick Q., Werner, Joshua, Nawab, Ahmad, Zhang, Wencai, Noble, Aaron, 
Free, Michael, and Yang, Xinbo. Demonstration of Scaled-Production of Rare Earth 
Oxides and Critical Materials from U. S. Coal-Based Sources (Final Report). United 
States: N. p., 2023. Web. doi:10.2172/1971736.

5 Garrett, D.E. (1989). Chemical Engineering Economics.

6 Ames National Laboratory. (2020, March 26). It’s all part of the Grind: CMI’s new 
hard drive Shredder serves up plenty of material for recycling science. Ames 
Laboratory. https://www.ameslab.gov/news/it-s-all-part-of-the-grind-cmi-s-new-
hard-drive-shredder-serves-up-plenty-of-material-for 

7 Loh, H.P., Lyons, Jennifer, White, Charles W.. Process Equipment Cost Estimation 
Final Report. United States: N. P., 2002. Web.



PrOMMiS Subtask 2.3: Advanced Optimization 
Capabilities for End-of-Life Products
Ana Torres, Christopher Laliwala
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End Of Life Products - Introduction
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Activities 
1. Prioritization of EoL; Quantification of feedstock 

potential
2. Literature Search: processing pathways
3. Superstructure development, modeling, and 

optimization 
4. Process flowsheet development, simulation, and 

economic analysis (if not available in literature)
5. Application to 2 case studies: Permanent magnets 

from HDD EV/HEV

• Approach: superstructure-based conceptual design EoL to REO
•  Long term goal: EoL feedstock agnostic process



EoL Products – (1) Prioritization
• Setting priorities

REO Price (USD/KG)
2018 2021

La 2 2

Ce 2 1.5

Nd 50 143

Dy 179 452

Pr 63 140

Figure: Dolf Gielen, & Martina Lyons. (2022). Critical Materials For The Energy Transition: Rare Earth Elements., IRENA 

=> Permanent Magnets 

• Quantification of feedstock potential in the USA

Figures made on the basis of sale projections/ technology adoption/ lifetime/ 
composition. Lower and upper estimates were obtained.   

References: 
• Blast et al. (2014). Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben.
• Alves Dias, P., Bobba, S., Carrara, S., Plazzotta, B. (2020), The role of rare earth elements in wind energy and electric 

mobility, EUR 30488 EN, Publication Office of the European Union, Luxembourg, ISBN 978-92-79-27016-4. 
• Sprecher, B., Kleijn, R., & Kramer, G. J. (2014). Recycling Potential of Neodymium: The Case of Computer Hard Disk 

Drives. Environmental Science & Technology, 48(16), 9506–9513. https://doi.org/10.1021/es501572z 
• Dolf Gielen & Martina Lyons. (2022). Critical Materials For The Energy Transition: Rare Earth Elements. 
• LDV Total Sales of PEV and HEV by Month (updated through May 2023). (2023). https://www.anl.gov/esia/reference/light-

duty-electric-drive-vehicles-monthly-sales-updates-historical-data 
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EoL Products – (2) Processing Pathways
• Data: Literature, Oak Ridge National Labs, Critical Minerals Innovation Hub 
• Example for HDDs:

Acid-free 
dissolution

Filtration 
1

REE Recovery
Cu(NO3)2 (aq) H2O

Copper 
Valorization

KHSO4 (aq)

Insoluble Cu-Fe 
mixed oxide residue

Cu(NO3)2 (aq)

CaSO4

Insoluble 
mixture of iron 

oxides

Precipitation/
Oxidation

NH4OH

Selective 
Dissolution

H2C2O4

Filtration 
2

H2O

Calcination

RE 
oxalatesFiltrate

REOs 
(Purity ≥  99.5%)

Shredder

Industrial Shredder
(Disassembly Pathway 2)

EOL 
HDDs

Shredded 
HDDs

Filtrate containing 
(NH4)3Fe(C2O4)3

Wastewater 
Treatment

CaCl2, Ca(OH)2 (aq)
Fe(OH)3, CaC2O4

NH4Cl (aq)

Scanning of HDD 
shipment into an 

inventory 
database

Vibratory 
bowl feeder 

for alignment

Identification 
and Sorting Disassembly

Metrology 
Station

Rest of 
HDD

REPM

Automated Disassembly 
(Disassembly Pathway 1)

EOL 
HDDs

REE 
Recovery

Blank 
Node

ORNL- Pub133587 
Patent US 11,230,752 B2 

Iowa U: Patent US 10,648,063 B2 Dissolution and separation of rare earth metals
CMI: Prodius et al, ACS Sus. Chem Eng., 2020.: Process applied to e-waste
CMI: Chowdury et al, ACS Sus. Chem. Eng. , 2021 TEA from REE Swarf

EOL HDDs swarf

H2 
decrepitation  

HDDs

Shredded 
HDDs

Shredded 
HDDs

• Expand 
literature search

• Mix & Match 
processes



EoL Products – (3) Superstructure
• Organize existing data in processing stages, identify competitive technology options at each stage
• Identify new connections 
• Example for HDDs:

CMI process• Each block is a 
flowsheet itself

Acid-free 
dissolution

Filtration 
1

 y
Cu(NO3)2 (aq) H2O

Copper 
Valorization

KHSO4 (aq)

Insoluble Cu-Fe 
mixed oxide residue

Cu(NO3)2 (aq)

CaSO4

Insoluble 
mixture of iron 

oxides

Precipitation/
Oxidation

NH4OH

Selective 
Dissolution

H2C2O4

Filtration 
2

H2O

Calcination

RE 
oxalatesFiltrate

REOs 
(Purity ≥  99.5%)

 
  

 
 

Filtrate containing 
(NH4)3Fe(C2O4)3

Wastewater 
Treatment

CaCl2, Ca(OH)2 (aq)
Fe(OH)3, CaC2O4

NH4Cl (aq)

   
   

 

 
  

 

 
 

 

    
  

  

 



EoL – (3) Superstructure Modeling
• Superstructures are modeled as networks

• Technology options  nodes  binary 
variable y =1 if in optimal pathway

• Arcs: flows of each species

• Allowed connections: logical constraints
• Objective function: NPV  

• Installed equipment cost and OPEX 
data: from TEA: existing in the 
literature or our own (via Aspen Tech)

• Framework: Seider et al. 

• Inlet/ Outlet flows  MB from simulations



EoL – (4) Process flowsheet development and 
costing
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• Only for those for which we could not find TEA in the literature published data

• OPEX and CAPEX in literature
• Required OPEX and CAPEX  

estimation 

• Estimations: 
• Aspen Plus flowsheet 

development
• Aspen Economics: Equipment 

cost



EoL – (4) Process flowsheet development and 
costing- Example
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24. Lyman, J.W., Palmer, G.R.: Recycling of Rare Earths and Iron from NdFeB Magnet Scrap. High Temperature Materials and Processes. 11, 175–188 
(1993). https://doi.org/10.1515/HTMP.1993.11.1-4.175

Leachate from 
previous (acid) 

dissolution

Precipitation 
Nd-Na salt

Precipitation 
Nd oxalate Calcination 

Nd oxalate

Nd-Na salt

Fe rich 
solution

Precipiation 
Fe 

(NH4)2SO4

Nd2O3



EoL (5) Case Study: Recovery REO from HDDs
(C. Laliwala, AI Torres, submitted FOCAPD 2024)

87

• Optimal solution for different collection rates (from future and past wastes) and REO prices; 
 

• ONL Shredding + CMI acid-free dissolution always optimal pathway



EoL (5) Case Study: Recovery REO from HDDs
(C. Laliwala, AI Torres, ESCAPE 2024, accepted)
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• Slightly different superstructure; 

• OPEX and CAPEX in 
literature

• Required in house 
estimation 

• Mix of literature and 
estimation



EoL (5) Case Study: Recovery REO from HDDs
(C. Laliwala, AI Torres, ESCAPE 2024, accepted)
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• Slightly different superstructure; 

• Base case: plant recycles 10 % 
of all EOL EVs and HEVs in the 
U.S. each year. 

• Optimal pathway:
• Automatic disassembly
• Hydrogen decrepitation
• Acid Free dissolution  

• NPV positive



EoL (5) Case Study: Recovery REO from HDDs
(C. Laliwala, AI Torres, ESCAPE 2024, accepted)
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• Automatic disassembly, 
hydrogen decrepitation, 
acid-free dissolution were 
always selected as optimal



Benchmark Surrogate Modeling Approaches
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Embed in optimization

SolvabilityPredictability

Interact with CPU/GPU 
clusters for computation

Train surrogate models
Machine learning

Optimal 
solutions

found

𝑬𝑬∗,𝑪𝑪∗

Trained models

Process simulator/data
• Complex units 

(columns, reactors)
• Superstructure



Future Work
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CM and REE flowsheets
• Replace complex units or parts with 

simple and accurate surrogates
• Embed surrogates in optimization
• Reduce computational cost while 

ensuring high quality of solutions

Block 1

Block 2

Block 3

Model 1

Model 2

Model 3

System simulation Disaggregation and modeling Optimization

Surrogate models

𝒈𝒈 ≈ �𝒈𝒈(𝑬𝑬)• Surrogate models under investigation
• NN
• Pysmo, Lasso, ALAMO 
• Linear model decision trees
• Symbolic regression



Overview – What You’ll Hear
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• Coal to Rare Earth Elements – University of Kentucky
• Process Model & Unit Operations
• Cost Model Development

• Membranes
• Process Model Development & Application Summary
• Optimization Cases Studies
• Enabling Scale-Up: Model-Design of Experiments

• End of Life Pathways – Magnets & Hard Drives
• Process Model
• Cost Model 
• Superstructure Optimization & Findings

• Ongoing / Parallel Efforts
• Identifying Model Uncertainty
• Benchmark Surrogate Modeling Approaches

• Model Usability & Distribution



Open-Source Platform
• Website: https://idaes.org/research/application-areas/ 
• GitHub repository:

• https://github.com/prommis/prommis 

• Documentation: 
• https://prommis.readthedocs.io/en/latest/ 

• Bi-Weekly Software Engineering
teleconferences coordinating development

• Targeting quarterly internal/public releases
• IPMP in progress for fully open-source license
• Overview video: coming soon!

PROMMIS Contributions

Download 
idaes-pse 
repository

Model 
Development

Open GitHub 
PR Merge Code

Get prommis
Follow 
standards and 
examples

Local system
Build and test 
models

Contribute 
models, tests, 
and examples 
to prommis

Rigorous testing 
and structural 
analysis

Path 2: create GitHub repository and make idaes-pse and prommis a dependency

Path 1: contribute to prommis repository
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https://idaes.org/research/application-areas/
https://github.com/prommis/prommis
https://prommis.readthedocs.io/en/latest/


Usability
Leverage NAWI/WaterTAP UI infrastructure

• Define key model inputs and outputs
• Distribute UI with PROMMIS flowsheets
• Parallel parameter sweeps (sensitivity analysis)

Gather requirements for UIs specific to WT
• E.g., conceptual design model configuration

Leverage IDAES core flowsheet visualization
• View flowsheet diagrams
• PROMMIS models <- new diagnostics capabilities

Assist team with Jupyter Notebooks and online 
documentation



Capital Cost Estimation Approach
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Data Management

FEED Studies

Legacy Models

Public 
References

NETL QGESS 
Reports1

Costing Correlations – Equipment Implementation

Excel

Python Dictionary 

IDAES Costing 
Framework

Excel

Total Plant Costing & 
Optimization

EXP =
ln RC1

RC2
ln RP1

RP2

Step 1: Identify/select reference source to obtain RP, 
RC, EXP values

Step 2: Fit data for a given expression (Guthrie’s 
method)
Step 3: Validation/Verification to system

SC = RC
SP
RP

EXP

SC: Scaled Bare Erected Cost
RC: Reference Bare Erected Cost
SP: Scaled Parameter
RP: Reference Parameter
EXP: Cost scaling exponent

Obtained from 
reference source

Obtained from multiple data 
points of reference source, 

or typical values
1 NETL’s QGESS: Capital Cost Scaling Methodology Revision 4 https://github.com/IDAES/idaes-pse/

https://github.com/IDAES/idaes-pse/


PrOMMiS Costing Library (to date)
PrOMMiS Costing Library:

• SC – scaled cost
• 𝛼𝛼 – reference cost / performance
• RP – reference parameter
• Exp – exponential factor
• i – ith unit operations in the library
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Front End Loader 
(2 yd3)

Front End Loader 
(10 yd3) Bucket Elevator Jaw Crusher VSI Crusher Roll Crusher

Vibrating Screen Storage Bins Dry Ball Mill PE Tanks Steel Tanks Tank Mixer

Elevator Motor Process/Slurry 
Pump Thickener Filter Press Conveyor Roaster

Gas Scrubber
Spray Chamber 
Quencher (77k-

60k cfm)

Spray Chamber 
Quencher (60k-

230k cfm)
Chiller Solution Heater Belt Filter

BioLeach Tanks Blower Mixer Settler
HDD Recycling 
Shredder (2700 

drives/hour)

HDD Recycling 
Furnace 

(Hydrogen 
Decrepitation)

Membranes*

Nanofiltration* Reverse 
Osmosis* Ion Exchange*

References:
2 Keim, Steven Anthony, and Naumann, Hans. Production of Salable Rare Earths Products from Coal and Coal Byproducts 
in the U.S. Using Advanced Separation Processes (Final Technical Report). United States: N. p., 2019. Web. 
doi:10.2172/1569277.
3 Honaker, Rick, Werner, Joshua, Yang, Xinbo, Zhang, Wencai, Noble, Aaron, Yoon, Roe-Hoan, Luttrell, Gerald, and 
Huang, Qingqing. Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth Minerals and Elements 
from Coal and Coal Byproducts Using Advanced Separation Technologies. United States: N. p., 2021. Web.
4 Honaker, Rick Q., Werner, Joshua, Nawab, Ahmad, Zhang, Wencai, Noble, Aaron, Free, Michael, and Yang, Xinbo. 
Demonstration of Scaled-Production of Rare Earth Oxides and Critical Materials from U. S. Coal-Based Sources (Final 
Report). United States: N. p., 2023. Web. doi:10.2172/1971736.
5 Garrett, D.E. (1989). Chemical Engineering Economics.
6 Ames National Laboratory. (2020, March 26). It’s all part of the Grind: CMI’s new hard drive Shredder serves up plenty 
of material for recycling science. Ames Laboratory. https://www.ameslab.gov/news/it-s-all-part-of-the-grind-cmi-s-new-
hard-drive-shredder-serves-up-plenty-of-material-for 
7 Loh, H.P., Lyons, Jennifer, White, Charles W.. Process Equipment Cost Estimation Final Report. United States: N. P., 
2002. Web.

𝑆𝑆𝑆𝑆𝑖𝑖 = 𝛼𝛼𝑖𝑖  ∗ 𝑅𝑅𝑃𝑃𝑖𝑖𝐸𝐸𝐸𝐸𝑝𝑝𝑖𝑖

* WaterTap library
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