1st-Principles Modeling of Sorbent-Based DAC Systems Advanced PSE+ Stakeholder Summit

Daison YancyCaballero^{a,b}, Ryan Hughes^{a,b}

a) National Energy Technology Laboratory, 626 Wallace Rd, Pittsburgh, PA,15236 b) NETL support contractor, 626 Wallace Rd, Pittsburgh, PA,15236

2

Key Outcome: Support NETL DAC Technology Development

Support process design and scale-up analysis of NETL's novel sorbent

- Guide experiments to reduce modeling uncertainty and reduce technical risk
- Evaluate different regeneration methods (temperature swing, vacuum assisted temperature swing, etc.)
- Characterize sorbent performance

Advanced Modeling tools

Model libraries

- Large suite of first- principles contactor models
- Adaptable open models for both sorbent and solvent based systems
- Custom models in commercial platforms

Open Source: github.com/IDAES/idaes-pse github.com/CCSI-Toolset

How To Support Technology Development For Solid Sorbents?

Key Contributions:

- Established a collaboration workflow to support material development and experimental campaigns
- Developed a gas/solid contactor model library
- Capital and operating costs for sorbent systems: leveraged generalized methodology for project & process costing, and fixed and variable O&M ^{[1][2]}
- Process design and optimization of Direct Air Capture Technologies

U.S. DEPARTMENT OF ENERGY

From Experiments to Flowsheet Optimization

Guide Experimental collaborators to measure critical data

The **goal** is to suspport **NETL's DAC Test Center** with process system engineering and scale up analysis for their **novel sorbent material** (*PIM-1-AO-TAEA*).

- Guide experimentalists to measure critical data to inform process models
- Is this sorbent competitive with existing sorbents and MOFs?
- What is the sorbent performance under different ambient conditions?
- How uncertainty affects performance?

Process Modeling of NETL Sorbent Case Study

Modeling Fixed Bed Designs With Low Pressure Drop

 Design of the column to mimic the air contactor presented by Climeworks, which resembles an air ventilation system rather than a conventional adsorber column.

Assumption of a flat bed^[1] to mimic a differential segment of the plates containing the solid sorbent in the Climeworks contactor

Dimension	Value
Bed Diameter (m)	0.1
Bed Height (m)	0.01

Two process models developed for analysis

- Shortcut TVSA model
- Rigorous TVSA model

[1] Young, John and García-Díez, Enrique and Garcia, Susana and van der Spek, Mijndert, "The impact of binary water-CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes," Energy Environ. Sci., (2021), 14(10), 5377-5394

7

Sorbent Modeling Approaches

CO₂ Kinetic Model: Linear Driving Force (LDF) Model

$$\frac{dq_{CO_2}}{dt} = k_{CO_2} (q_{CO_2}^* - q_{CO_2})$$

Parameter min
estimation:
$$\theta (q_{exp} - q_{model})' (q_{exp} - q_{model})$$

Model Fit to experimental TGA data at 25 °C

- **NET**NATIONAL ENERGY TECHNOLOGY LABORATORY

H₂O Isotherm and Kinetic Model

Water Isotherm Model, GAB model²:

$$q_{H_2O}^* = q_m \frac{K_{ads}C_G x_{RH}}{(1 - K_{ads} x_{RH})(1 + (C_G - 1)K_{ads} x_{RH})}$$
LDF model:
$$\frac{dq_{H_2O}}{dt} = k_{H_2O}(q_{H_2O}^* - q_{H_2O})$$
Parameter min $(q_{exp} - q_{model})'(q_{exp} - q_{model})$
0.7
0.6
Relative Humidity (-)
H_2O Loading (mol/kg)
---- Model Prediction

[1] Sabatino, F.; Grimm, A.; Gallucci, F.; van Sint Annaland, M.; Kramer, G. J.; Gazzani, M. A Comparative Energy and Costs Assessment and Optimization for Direct Air Capture Technologies. Joule 2021, 5 (8), 2047–2076. <u>https://doi.org/10.1016/j.joule.2021.05.021</u>.
 [2] Young John and García-Diez, Enrique and Garcia, Susana and van der Snek, Mindert, "The impact of binary water-CO2 isotherm model".

 [2] Young, John and García-Díez, Enrique and Garcia, Susana and van der Spek, Mijndert, "The impact of binary water–CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes," Energy Environ. Sci., (2021), 14(10), 5377-5394

CO₂ cyclic working capacity with varying CO₂ purity

Key Takeaway:

• At mild regeneration conditions, positive working capacity only possible at low CO₂ purities

Modeling Water Effects on Sorbent Performance

- Water effects are important, as H₂O in humid air tends to increase CO₂ loading, especially at low CO₂ partial pressure
- Data Gap (humid data): addressed by using an enhancement factor approach for CO₂/H₂O co-adsorption based on comparable sorbent humid data from the literature^[1]

Isotherm with/without enhancement factor

Young, John and García-Díez, Enrique and Garcia, Susana and van der Spek, Mijndert, "The impact of binary water–CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes," Energy Environ. Sci., (2021), 14(10), 5377-5394

ONAL

Case Studies and Sensitivity Studies

NATIONAL ENERGY TECHNOLOGY LABORATORY

Shortcut Model

Cases tested:

- 1. 75 °C, humid air, no enhancement factor
- 2. 100 °C, humid air, no enhancement factor
- 3. 75 °C, humid air, enhancement factor
- 4. 100 °C, humid air, enhancement factor

Metric/Cases	1	2	3	4
CO ₂ Capture %	0.8	83.2	81.5	99.0
CO ₂ Purity %	3.1	12.7	17.7	24.6
CO ₂ Purity % (H ₂ O-free)	10.3	96.2	87.2	98.0
Energy Requirement(MJ/kg)	1707	20.6	33.7	9.3

Rigorous Model

Sensitivity study exploring the tradeoff between energy requirement and productivity

- Design variables adjusted by +/- 50% of their nominal value
- Mass (MTC) and heat (HTC) transfer coefficient increased to 5x their nominal value
- Investigated regeneration conditions of 0.1 bar and 100 °C

Key Takeaways:

- Accounting for water effects will drastically affect performance prediction \rightarrow Need for H₂O/CO₂ data
- What are the optimal design variables?

- What are the design and operating variables which minimize the cost of CO₂ capture?
 - Costing model developed using IDAES costing library and NETL Sorbent Case Study¹
 - Apply the FOQUS toolset to connect the Aspen model, IDAES costing libraries, and optimization algorithms

$\min_{x} f(x)$	Cost of Capture (\$/tonne)
s.t.	
$x^L \le x \le x^U$	Decision variable bounds
h(x) = 0	Modeling eqs. (mass balances, energy balances, etc.)
$g(x) \leq 0$	Process constraints

Optimization Problem

FOQUS Catoo Capture Simulation for Industry Impact IDAES FOQUS · DFO Solvers · DFO So

Costing

FOQUS Connection

Results:

Decision Variable	Optimized Value
Adsorption Time [mins]	21.56
Desorption Time [mins]	4.09
Air pressure drop [bar]	1.63E-6
Steam sweep pressure drop [bar]	4.99E-8
Metric	Optimized Value
Recovery	0.73
CO ₂ Product Purity	0.09
CO ₂ Product Purity (water-free basis)*	0.95
Energy Requirement [MJ/kg CO ₂]	14.71
Productivity [kg CO ₂ /h/m ³]	15.67
Cost of Capture [\$/tonne]	268.2

*Cost are preliminary, The cost for removing all water from the product has not yet been included in the costing

Loading profile for optimized case

Optimization Results

Sensitivity Studies

Sorbent price and lifespan sensitivity

Ambient Conditions Performance Analysis

INTERNAL USE ONLY -NOT APPROVED FOR PUBLIC RELEASE [1] Global Modeling and Assimilation Office (GMAO) (2015), inst3 3d asm Cp: MERRA-2 3D IAU State, Meteorology Instantaneous 3-hourly (p-coord, 0.625x0.5L42), version 5.12.4, Greenbelt, MD, USA: Goddard Space 15 Flight Center Distributed Active Archive Center (GSFC DAAC), Accessed 3/1/24 at doi: 10.5067/VJAFPLI1CSIV.

NATIONAL RGY

Ambient Conditions Performance Analysis

Analysis of a candidate site (Odessa, TX)

Poster: "Modeling and Analysis of Climate Variation Effects on Fixed-Bed Direct Air Capture Systems"

16

- Provided modeling support to sorbent developers at NETL
- Identified data needs to inform process models and improve fidelity of model predictions
- Used 1st-principles contactor models to identify process configurations and optimal design
- Investigated robustness of process to varying ambient conditions

Support of NETL DAC Test Center

- Goal is to help develop an experimental testing framework to support technology developers at the NETL DAC Test Center
- Collaboration with Design of Experiments team
 - "Model-Based Design of Experiments with Pyomo.DOE"
- Lewatit VP OC 1065¹ as baseline sorbent

ATIONAL

[1] Young, John and García-Díez, Enrique and Garcia, Susana and van der Spek, Mijndert, "The impact of binary water–CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes," Energy Environ. Sci., (2021), 14(10), 5377-5394

The team gratefully acknowledges support from the U.S. DOE's Office of Fossil Energy and Carbon Management / NETL Carbon Dioxide Removal Multi-Year Research Plan through the Carbon Dioxide Removal Program.

Acknowledgements

Senior PI: Janice Steckel

Experimental Team: Ali K. Sekizkardes, Victor A. Kusuma, Jeffrey T. Culp, Patrick Muldoon, and David Hopkinson

Process System Engineering Team: Benjamin Omell, Jinliang Ma, Anca Ostace

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Questions/Comments

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: Daison Yancy Caballero daison.yancycaballero@netl.doe.gov

Extra Slides

NETL's Costing Structure (IDAES Costing Framework)

https://github.com/IDAES/idaes-pse/tree/main/idaes/models_extra/power_generation/costing

ATIONAL

Data Needs to Inform Process Models

- **NATIONAL** ENERGY TECHNOLOGY LABORATORY

Guide Experimental collaborators to measure critical data

Key Data Requirements

- Physical properties:
 - Sorbent density and heat capacity, particle density and size
- Equilibrium Data:
 - Pure component adsorption isotherms (CO₂ and H₂O), and Cooperative/Competitive CO₂+H₂O adsorption isotherm
- Transport/Kinetic Data:
 - \circ TGA data and breakthrough experiments on binary adsorption of CO₂ and H₂O for mass transfer coefficients.
 - Heating and cooling experiments for heat transfer coefficients

Measured Data

- Physical properties (sorbent density, heat capacity, size of particles)
- Pure component isotherm of CO₂ at different temperatures
- TGA data of pure CO₂ and CO₂ under humid conditions

Missing Data

- Pure component isotherm of H₂O
- Cooperative/competitive $CO_2 + H_2O$ adsorption data
- Breakthrough data for CO_2 and H_2O
- Breakthrough at different temperatures

Addressing Data Limitations

- Pure component isotherm of H₂O taken from literature
- Enhancement factor for cooperative CO₂+H₂O adsorption
- Heat transfer coefficient constant and taken from literature

IDAES 0-D TVSA Model

1. Heating Step Mass balance: $\frac{\epsilon P}{R} \frac{d(y/T)}{dt} + \rho_b \frac{dn_1}{dt} - y \left(\frac{\epsilon P}{R} \frac{d(1/T)}{dt} + \rho_b \sum_{i=1}^2 \frac{dn_i}{dt} \right) = 0$ Energy balance: $C_{p,b} \frac{dT}{dt} - \rho_b \sum^2 (-\Delta H_i) \frac{dn_i}{dt} = US(T_{heat} - T)$ 2. Cooling Step Mass balance: $\frac{\epsilon}{R} \frac{d(P/T)}{dt} + \rho_b \sum_{i=1}^{2} \frac{dn_i}{dt} = 0$ Energy balance: $C_{p,b} \frac{dT}{dt} - \rho_b \sum^{2} (-\Delta H_i) \frac{dn_i}{dt} = US(T_{cool} - T)$ 3. Pressurization Step Mass balance: $\frac{\rho_b}{\epsilon} RT \left(\left(n_{1,press}^{end} - n_{1,cool}^{end} \right) - y_F \sum_{i=1}^{2} \left(n_{i,press}^{end} - n_{i,cool}^{end} \right) \right) +$ $\left(y_{\text{press}}^{\text{end}}P_{\text{H}} - y_{\text{cool}}^{\text{end}}P_{\text{L}}\right) - y_{\text{F}}(P_{\text{H}} - P_{\text{L}}) = 0$ $L \left[RT_{L} \rho_{h} \sum_{n=1}^{2} (and and b) \right]$ P_{L} Pros: Equation-oriented model with CSS automatically satisfied through model constraints Suitable for KPI estimation, feasibility studies, and optimization Cons: No axial variation No kinetics No sweep gas allowed in heating step

Aspen 1-D TVSA Model

Gas phase balances

Mass balance:
$$\varepsilon_b \frac{\partial C_{g,i}}{\partial t} = -\frac{\partial (v_g C_{g,i})}{\partial z} - (1 - \varepsilon_b) \frac{6k_{f,i}}{d_p} (C_{g,i} - C_{surf,i})$$

Energy balance:

$$\varepsilon_{b}\rho_{g}C_{v,g}\frac{\partial T_{g}}{\partial t}$$

= $-\rho_{g}C_{v,g}v_{g}\frac{\partial T_{g}}{\partial z} - P\frac{\partial v_{g}}{\partial z} - (1-\varepsilon_{b})a_{p}h_{f}(T_{g}-T_{s}) - a_{HX}h_{HX}(T_{g}-T_{t})$

Solid phase balances

Mass balance:
$$\frac{dq_{CO_2}}{dt} = k_I (q_{CO_2}^* - q_{CO_2})$$

Energy balance: $\rho_s C_{p,s} \frac{\partial T_s}{\partial t} = \rho_s (-\Delta H_{CO_2}) \frac{dq_{CO_2}}{dt} + a_p h_f (T_g - T_s)$

Momentum Balance (Ergun Equation)

Pros:

- Aspen GUI makes it easy for simulating multiple cycle types
- Suitable for simulation, KPI estimation, and feasibility studies

Cons:

- Satisfying CSS requires successive dynamic simulations
- Increased computational time for advanced analysis (optimization, etc.)

IDAES 1-D TVSA Model (development ongoing)

Gas phase balances

Mass balance:
$$\frac{\partial A_g C_i}{\partial t} = -\frac{\partial F_i}{\partial x} - A_s \rho_s \frac{\partial q_i}{\partial t}$$

Energy balance:

$$\frac{\partial \left(A_g \sum C_i U_i\right)}{\partial t} = -\frac{\partial \sum F_i H_i}{\partial z} - A_s \rho_s \sum H_i \frac{\partial q_i}{\partial t} - \frac{6A_s h_f}{d_p} \left(T_g - T_s\right) - \pi D_{w,i} h_{gw} \left(T_g - T_w\right)$$

Solid phase balances

Mass balance: $\frac{\partial q_i}{\partial t} = k_f [q_i^{eq}(p_{i,g}, T_s) - q_i]$

Energy balance:

$$\frac{\partial \left[A_{s}\rho_{s}\left(C_{p,sorb}T_{s}+\sum q_{i}H_{i,ads}\right)\right]}{\partial t}=\frac{6A_{s}h_{f}}{d_{p}}\left(T_{g}-T_{s}\right)+A_{s}\rho_{s}\sum H_{i}\frac{\partial q_{i}}{\partial t}$$

Momentum Balance (Ergun Equation)

Pros:

- Equation-oriented model with CSS automatically satisfied through model constraints
- Suitable for optimization

Cons:

- Large model which requires discretization in the spatial and time domains
- Difficult initialization and convergence

Understanding Impacts of Ambient Conditions

- Direct Air Capture may be significantly impacted by climate and shifting ambient conditions
- Understanding the economic impacts of shifting ambient conditions critical for determining optimal site locations and development of control strategies to minimize negative impacts
- This work demonstrates tool development that can be implemented with first-principal models to better understand these impacts

Two Contactor Models Developed

- Model adopted from previous work
- Adsorption assumed isothermal requiring lengthy cooling step and hence conservative in estimated cycle time
- Adsorption equilibrium presumed
- Quick first pass performance estimate
- May be suitable (preferred) over surrogate for advanced analysis/optimization

Aspen 1-D Four Step Model

- Cooling step and adsorption a single step
- Mass transfer considered (important for pressure drop mass transfer tradeoff when data becomes available)
- Used for rigorous TEA and optimization

Flat bed assumption used for both models^[1]

[1] Young, John and García-Díez, Enrique and Garcia, Susana and van der Spek, Mijndert, "The impact of binary water–CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes," Energy Environ. Sci., (2021), 14(10), 5377-5394

PIM-1-AO-TAEA Submodels

NATIONAL ENERGY TECHNOLOGY LABORATORY

Isotherm Model: Modified Toth (Sabatino et. al., 2021) Fit to Experimental Data

н

- Fit traditional isotherm models along with more complex literature models by performing parameter estimation using available isotherm data
- Pyomo and parmest used to perform parameter estimation for each model

Е.

001 D

• Evaluate each model by their fit to the data and information criterion take model size into account

п.

(Model Name	RMSE [-]	# parameters	AIC	BIC	Pressure (bar)	Pressure (bar)
Modified Toth	2.65E-03	12	-3.215E+03	-3.171E+03	ion to 100 °C	
Dual-Site Sips	4.09E-03	8	-2.987E+03	-2.958E+03	dified Toth Model	Modified Toth Model
Dual-Site Langmuir	4.33E-03	6	-2.960E+03	-2.938E+03		2.5 - 298 K
Toth Model 3	5.14E-03	5	-2.868E+03	-2.849E+03		
Toth Model 2	5.41E-03	5	-2.840E+03	-2.822E+03		2.0 333.15 K 373.15 K 393.15 K
Langmuir-Freundlich	5.71E-03	5	-2.811E+03	-2.793E+03		트 1.5 - Bg
Toth Model 1	6.11E-03	4	-2.775E+03	-2.761E+03	— 298 K	0 1.0 - 6
_F Langmuir Model 2	8.92E-03	4	-2.569E+03	-2.555E+03	348 K 303.15 K	0.5
Langmuir Model 1	9.14E-03	3	-2.558E+03	-2.547E+03	333.15 K 373.15 K 393.15 K	
⁷ Freundlich Model	1.11E-02	4	-2.449E+03	-2.434E+03).4 0.6 0.8 1.0	10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0}
U V Yexp / V	чехр /				Pressure (bar)	Pressure (bar)

п

MI D

Sabatino, F.; Grimm, A.; Gallucci, F.; van Sint Annaland, M.; Kramer, G. J.; Gazzani, M. A Comparative Energy and Costs Assessment and Optimization for Direct Air Capture Technologies. Joule 2021, 5 (8), 2047–2076. https://doi.org/10.1016/j.joule.2021.05.023.

PIM-1-AO-TAEA Submodels

CO₂ Kinetic Model

• Fit a linear driving force model to available TGA adsorption data

Linear driving force (LDF) model: $\frac{dq}{dt} = k(q^* - q)$

min θ

Parameter estimation:

$$(q_{exp} - q_{model})' (q_{exp} - q_{model})$$

Model Fit to experimental TGA data at 25 °C

H₂O Isotherm and Kinetic Model

Fit isotherm and kinetic parameters to pure H₂O TGA data with varying humidity

Water Isotherm Model, GAB model (Young et. al., 2021):

$$q_{H_2O}^* = q_m \frac{K_{ads}C_G x_{RH}}{(1 - K_{ads} x_{RH})(1 + (C_G - 1)K_{ads} x_{RH})}$$

LDF model:
$$\frac{dq_{H_20}}{dt} = k_{H_20} (q_{H_20}^* - q_{H_20})$$

Parameter estimation: $\frac{min}{\theta} (q_{exp} -$

$$_{exp} - q_{model})' \left(q_{exp} - q_{model}
ight)$$

Model Fit to experimental TGA data

PIM-1-AO-TAEA Submodels

Kinetic Model

• Fit a linear driving force model to available TGA adsorption data

Linear driving force model:

$$\frac{dq}{dt} = \mathbf{k}(q^* - q)$$

Assuming k and q^* are constant, analytical solution can be obtained:

$$q = q^* \big(1 - exp(-kt) \big)$$

Parameter estimation:

$$\frac{\min}{\theta} \left(q_{exp} - q_{model} \right)' \left(q_{exp} - q_{model} \right)$$

Results:

RMSE = 0.90E-2 [mol/kg]

k=0.0065 s⁻¹

Model Fit to experimental TGA data at 25 °C

INTERNAL USE ONLY – NOT APPROVED FOR PUBLIC RELEASE Young, John and García-Díez, Enrique and Garcia, Susana and van der Spek, Mijndert, "The impact of binary water–CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes," Energy Environ. Sci., (2021), 14(10), 5377-5394

PIM-1-AO-TAEA Submodels

Water Effects

• **Assumption**: We cope with the limited availability of data by combining the sorbent *PIM-1-AO-TAEA* CO₂ isotherm with available H₂O isotherm for other materials (Lewatit VP OC 1065 [Young et. at., 2021])

Effect of H₂O on CO₂ Isotherm for Lewatit VP OC 1065

- Usually, CO₂ does not affect H₂O loading
- H₂O in humid air tends to increase the CO₂ loading
 - \circ Esp. at low CO₂ partial pressure
 - Enhancement factor as high as 2.5
- Higher enhancement factor at lower CO₂ partial pressures

INTERNAL USE ONLY - NOT APPROVED FOR PUBLIC RELEASE

Isotherm Model for PIM-1-AO-TAEA Sorbent With

Enhancement Factor for Wet CO2/H2O Co-adsorption

32

• Assumption: Enhancement Factor of Lewatit VP OC 1065 applied to PIM-1-AO-TAEA CO₂ isotherm (Lewatit VP OC 1065 [Young et. at., 2021])

PIM-1-AO-TAEA Submodels

Enhancement Factor of Lewatit VP OC 1065

Water Effects

U.S. DEPARTMENT OF

CO₂ Cyclic Working Capacity Analysis

Difference between the equilibrium CO2 loading at adsorption and at desorption conditions

$$\Delta q_{CO_2} = q_{ads} - q_{des}$$

Adsorption conditions $T = 25 \degree C$ P = 1 bar $y_{CO_2} = 400 \text{ ppm}$ Desorption conditions T = 50-110 °C P = 0.00001-0.5 bar y_{CO_2} = 0.02-1 → purity = 2-100%

Aspen 1D Model: Base Case Results

- **NETIONAL** ENERGY TECHNOLOGY LABORATORY

Variable	Value	Units
CO ₂ Capture Fraction	0.133	-
CO ₂ Product Purity	2.35E-02	-
CO2 Product Purity (Water-free basis)	0.878	-
Cycle Time	32	Mins
Energy Requirement	38.84	MJ/kg CO ₂
Productivity	5.96	kg CO ₂ /h/m ³
Inlet Air Velocity	0.871	m/s
Inlet Steam Velocity	0.00437	m/s

Notes:

- Energy requirement consists of only thermal energy: heating energy and energy required to generate the steam feed
- Steam generation energy calculated assuming ΔH_{vap} =2257 kJ/kg (saturated steam at 1 bar)

INTERNAL USE ONLY – NOT APPROVED FOR PUBLIC RELEASE

Sabatino, F.; Grimm, A.; Gallucci, F.; van Sint Annaland, M.; Kramer, G. J.; Gazzani, M. A Comparative Energy and Costs Assessment and Optimization for Direct Air Capture Technologies. Joule 2021, 5 (8), 2047–2076. https://doi.org/10.1016/j.joule.2021.05.023.

Aspen 1D Model: Sensitivity Study

Exploring the tradeoff between energy requirement and productivity

- Design variables adjusted by +/- 50% of their nominal value
- Mass (MTC) and heat (HTC) transfer coefficient increased to 5x their nominal value
- Investigated regeneration conditions of 0.1 bar and 100 °C

Comparison to Sabatino et. al., 2021:

- Productivity Range: 4-11 kg CO₂/h/m³
- Energy Requirement Range: 4.9-13.3 MJ/kg CO₂
- Include a lower regeneration pressure (0.01 bar) and higher temperature (120 °C) in optimization space

Results:

Decision Variable	Optimized Value
Adsorption Time [mins]	21.56
Desorption Time [mins]	4.09
Air pressure drop [bar]	1.63E-6
Steam sweep pressure drop [bar]	4.99E-8
Metric	Optimized Value
Recovery	0.73
CO ₂ Product Purity	0.09
CO ₂ Product Purity (water-free basis)*	0.95
Energy Requirement [MJ/kg CO ₂]	14.71
Productivity [kg CO ₂ /h/m ³]	15.67
Cost of Capture [\$/tonne]	268.2

*Cost are preliminary, DO NOT CITE

* The cost for removing all water from the product has not yet been included in the costing

Profiles for optimized case

Optimization Results

Costing Issues/Concerns:

- Low pressure drop outside of feed fans scaling bounds. At minimum ΔP value: 363.3 \$/tonne, 35% increase
- Steam extraction vs. use of low-quality/waste steam
- Water removal before CO₂ product compression
- Gross removal vs. Net removal. Accounting for emissions of energy sources

Sensitivity Studies

Sorbent price and lifespan sensitivity

Steam and auxiliary power sensitivity

FOQUS Tool – Central Framework for CCSI² Analysis

Framework for Optimization, Quantification of Uncertainty, and Surrogates

Isotherm Models

- Fit traditional isotherm models along with more complex literature models by performing parameter estimation using available isotherm data
- Pyomo and parmest used to perform parameter estimation for each model
- Evaluate each model by their fit to the data and information criterion take model size into account

Parameter Estimation: $\begin{array}{l} \min \\ \theta \end{array} obj = \left(\frac{q_{exp}^* - q_{model}^*}{q_{exp}^*}\right)' \left(\frac{q_{exp}^* - q_{model}^*}{q_{exp}^*}\right) \\
\text{RMSE [dimensionless]: } \sqrt{\frac{obj}{N}} \\
\text{AIC: } 2p + Nln \left(\frac{obj}{N}\right) \\
\text{BIC: } \ln(N)p + Nln \left(\frac{obj}{N}\right)
\end{array}$

N =# of data points p = # of parameters

Model Name	RMSE [-]	# parameters	AIC	BIC
Modified Toth	2.65E-03	12	-3.215E+03	-3.171E+03
Dual-Site Sips	4.09E-03	8	-2.987E+03	-2.958E+03
Dual-Site Langmuir	4.33E-03	6	-2.960E+03	-2.938E+03
Toth Model 3	5.14E-03	5	-2.868E+03	-2.849E+03
Toth Model 2	5.41E-03	5	-2.840E+03	-2.822E+03
Langmuir-Freundlich	5.71E-03	5	-2.811E+03	-2.793E+03
Toth Model 1	6.11E-03	4	-2.775E+03	-2.761E+03
Langmuir Model 2	8.92E-03	4	-2.569E+03	-2.555E+03
Langmuir Model 1	9.14E-03	3	-2.558E+03	-2.547E+03
Freundlich Model	1.11E-02	4	-2.449E+03	-2.434E+03

• Modified Toth gives best RMSE, AIC, and BIC

DAC siting tool

- **NET NATIONAL ENERGY** TECHNOLOGY LABORATORY

Exercise to visualize DAC favorability in different regions

Excel-based tool which accounts for annualized temperature and humidity & proximity to storage to map and calculate costs for comparative sites

Technical Inputs	Case 1	Case 2
Type of DAC/Configuration	NETL KOH Solvent	NETL KOH Solvent
Plant Capacity [Tonnes of CO2/year]	1,000,000	1,000,000
CO2 Concentration [ppm]	415	415
Plant Performance at CO2 level [% of baseline]	100%	100%
Plant Location [City, State Initials]	Odessa, TX	Chicago, IL
Source of Energy	Integrated NGCC	Integrated NGCC
Upstream NG Emissions Intensity Scenario	Low	Low
Financial Inputs	Case 1	Case 2
Years of Operation	30	30
Capital Cost [2020\$M]	1126.8	1126.8
Capacity Factor	0.85	0.85
Solvent Cost [\$/tonne]	600	600
Natural Gas Cost [\$/MMBtu]	4.42	4.42
Water Cost [\$/gal]	0.0019	0.0019
Fixed Charge Rate	0.0707	0.0707
Tax Incentives [\$/tCO2]	\$180.00	\$180.00
Duration of Tax Incentives [Years]	12	12
Discount Rate	0.05	0.05

Output	Odessa, TX	Chicago, IL	Units			
Average Temperature	20	12	Degrees Celsius	-		
Average Humidity	45%	70%	%			
CO2 Concentration	415	415	ppm	Seattle		
Capture Rate	72.9%	66.4%	%			
DAC Gross CO2 Removed from Air	825.889	752.710	tCO2/vear	-		
			1002/700		- No. 1	U
Output	Odessa, TX	Chicago, IL	Units	San Francisco		S
CO2 Released from Flue Gas	5,255	5,255	tCO2/year			
Net CO2 Removed from Air (Direct Emissions)	820,634	747,455	tCO2/year	Los Angeles		
CO2 Capture Efficiency	99.4%	99.3%	%	Legend DAC Log	ation	
Upstream NG Emissions Intensity	0.00627	0.00486	tCO2e/GJ	😑 Optima	T&S	M
CO2e Emissions from Upstream NG	44,568	33,262	tCO2e/year	😑 Other T	&S	
Natural Gas Supply Basin	Gulf - Shale	Appalachian - Shale				
Net CO2 Removed from Air (Includes Direct+Upstream NG Emissions)	776,066	714,193	tCO2/year			_
CO2 Captured from Flue Gas	187 131	187 131	tCO2/vear	ancouver		
CO2 Captured from Calciner	314,926	314.926	tCO2/vear	Seattle		
Total CO2 Flow for T&S (DAC+NGCC)	1,327,946	1,254,767	tCO2/year			
Optimal Storage Formation Storage Site State Transport and Storage Cost	Seven Rivers1 TX \$10.30	Mount Simon7 Ml \$15.04	20195/tCO2		5	U I Denver c
				San		5
Output	Odessa, TX	Chicago, IL	Units			
Cost of Gross DAC CO2 Removal (Plus Cost of T&S)	\$268.72	\$288.40	2019\$/tCO2-gross	Los Angeles		
Cost of Net CO2 Removed from Air (Plus Cost of T&S)	7 \$282.16	\$300.79	2019\$/tCO2-net	DAC Loc	ation T&S	Mc
	6	%		Other Ta	\$5	
Cost of Plant CO2 Removed from Air (Plus Cost of T&S)	\$189.54	\$196.46	2019\$/tCO2-plant			
	4	%				

Contactor and Process Modeling

Modeling a Fixed Bed Design With Low Pressure Drop

• Design of the column to mimic the air contactor presented by Climeworks, which resembles an air ventilation system rather than a conventional adsorber column.

Assumption of a flat bed (Young et. al., 2021) to mimic a differential segment of the plates containing the solid sorbent in the Climeworks contactor

Dimension	IDAES Model
Bed Diameter (m)	0.1
Bed Height (m)	0.01

43

Costing Implementation for DAC systems

Cost Sco	ling	Scaled Parameter
	Scaled Cost (BEC) $SC = RC \left(\frac{SR}{R}\right)$	$\left(\begin{array}{c} \alpha \\ p \end{array} \right)^{\alpha}$ Exponent accounts for economics of scale Based on technologies
	Reference Cost (199	Reference Parameters
	Large Data base (vendor quotes)	
Account Number	Item Description	Parameter
15	Direct Air Capture System	
15.1	DAC Adsorption/Desorption Vessels ^A	Vessel Internal Diameter, ft
15.2	DAC CO ₂ Compression & Drying	Compressor Auxiliary Load, kW
15.2 15.3	DAC CO_2 Compression & Drying DAC CO_2 Compressor Aftercooler	Compressor Auxiliary Load, kW Heat Exchanger Duty, MMBtu/hr
15.2 15.3 15.4	DAC CO ₂ Compression & Drying DAC CO ₂ Compressor Aftercooler DAC System Air Handling Duct and Dampers	Compressor Auxiliary Load, kW Heat Exchanger Duty, MMBtu/hr Inlet Air Flow, Ib/hr
15.2 15.3 15.4 15.5	DAC CO2 Compression & DryingDAC CO2 Compressor AftercoolerDAC System Air Handling Duct and DampersDAC System Air Handling FansA	Compressor Auxiliary Load, kW Heat Exchanger Duty, MMBtu/hr Inlet Air Flow, lb/hr Pressure Drop, in. H ₂ O (differential)
15.2 15.3 15.4 15.5 15.6	 DAC CO₂ Compression & Drying DAC CO₂ Compressor Aftercooler DAC System Air Handling Duct and Dampers DAC System Air Handling Fans^A DAC Desorption Process Gas Handling System 	Compressor Auxiliary Load, kW Heat Exchanger Duty, MMBtu/hr Inlet Air Flow, lb/hr Pressure Drop, in. H ₂ O (differential) DAC CO ₂ Product Flow Rate, lb/hr
15.2 15.3 15.4 15.5 15.6 15.7	 DAC CO₂ Compression & Drying DAC CO₂ Compressor Aftercooler DAC System Air Handling Duct and Dampers DAC System Air Handling Fans^A DAC Desorption Process Gas Handling System DAC Steam Distribution System 	Compressor Auxiliary Load, kW Heat Exchanger Duty, MMBtu/hr Inlet Air Flow, lb/hr Pressure Drop, in. H ₂ O (differential) DAC CO ₂ Product Flow Rate, lb/hr DAC Steam Flow Rate, lb/hr

NETL's Costing Structure (IDAES Costing Framework)

Annualized costing methodology based on established NETL guidelines¹

Quality Gu Scaled C Refere Large Data b	idelines for Energy System Studies Cost (BEC) Ence Cost Dase (vendor quotes)	Scaled Parameter Exponent accounts for economics of scale Based on technologies Reference Parameters Reference Parameters	
Variable	Definition	Expression	Units
BMC	Bare Module Cost	$BMC = F_{BM} * \frac{CEPCI_{2019}}{CEPCI_{2013}} * C_E$	\$MM
TPC	Total Plant Cost	<i>TPC</i> = <i>TBMC</i> + <i>engineering fee</i> + <i>process/project contingencies</i>	\$MM
ТОС	Total Overnight Cost	TOC = TPC + Owner's cost	\$MM
TASC	Total As Spent Cost	TASC = TOC * 1.093	\$MM
Annualized capital cost	Annualized cost	Annualized Cost $= 0.0707 * TASC$	\$MM/y

INTERNAL LISE ONLY -

La Theis, "Quality Guidelines for Energy Systems Studies: Cost Estimation Methodology for NETL Assessments of Power Plant FOR PUP Performance - Feb 2021", NETL-PUB-22580, United States, 2021. https://doi.org/10.2172/1567736

NETL's Costing Structure (IDAES Costing Framework)

- Fixed O&M Costs:
 - Annual Operating Labor = # Operators * Labor Rate * $(1 + Op. Labor Burden) = 8 * 38.50 \left| \frac{\$}{hr} \right| 8760 \left| \frac{hr}{v} \right| * (1 + 0.3)$
 - *Maintenance Labor* = 0.4 * 0.019 * *TPC*
 - Administration & Support Labor = 0.25 * (Annual Op. Labor + Maint. Labor)
 - Property Taxes & Insurance = 0.02 * TPC
- Variable O&M Costs:
 - Maintenance Material Cost = TPC * 0.6 * 0.019/0.85 * Capacity Factor
 - Auxilliary Power = \$0.06/kWh
 - Cooling Water = 0.354/GJ
 - $Steam = \frac{7.33}{1000 kg}$
 - Sorbent = \$0.5/kg

Total Annualized Cost [MM/y] = Annualized Capital Cost + Fixed O&M + Variable O&M

CCSI² – Modeling, Optimization and Technical Risk Reduction

