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Why Are We Here?

IDAES has choices to make — where to
invest and what drivers to pay attention
to that can be influenced by mathematics
— modeling for sure but optimization and
real time control

Computational mathematics for real-

“Would you tell me, please, which way I ought to go . . . .. .
from here?’ said Alice. “That depends a good deal on t":n_e’ n SItu_ optlmlz.atlon and
decision-making applied to large-

where you want to get to,” said the Cat. I dont much

care where — “said Alice. “Then it doesn’t matter Scale, Complex Systems

which way you go,’ said the Cat.”
PyEo.

You've got to be very careful if you don't know where you
are going, because you might not get there.
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https://www.brainyquote.com/authors/yogi-berra-quotes

Key Points

o IDAES — applications *and* technology have been really instrumental in moving things
forward for PSE — this has been a great program from 2017-today

o Applications are now the current focus — there is a broad footprint which is great
o Having said this - we are now greedily eating our seed corn
o What this means is that underlying technology — “math” — is a necessary investment

(and does not come overnight or for free) and has diminished from the IDAES (read:
DOE) portfolio




A \1\6\0“ Core Enabling Technologies for IDAES
Q

Software and Computational Infrastructure Nonlinear Simulation & Optimization
- open-source, algebraic modeling language 2 - desian. operations estimaiion

with rich programming capabilities f ) o= - optimal control and dynamics,
- advanced solvers / architectures R il . trajectory, state estimation
- full data provenance (DMF) / A A B . - rigorous embedded black-box

Modeling Framework & Library / J * 4 i‘\ Discrete Optimization (MILP/NLP) p

- library of process unit operations R (e~ oy dacian. inteqgration. intensificction

- rigorous thermo, properties : - materials optimization
multiphase physics k. | b _‘ - grid integration, market analysis,

- grid operation and planning models o 44 grid operations and planning

Machine Learning / Parameter Est. : 5 1y 5 Uncertainty Quant. / Optimization
- physical properties, thermodynamics . e : 3 - comprehensive, end-to-end L1
reaction kinetics ) - efficient sensitivity analysis
- multi-scale surrogate modeling and - two-stage stochastic programming
optimization - robust optimization, adaptive robust optimization




Things Are Changing...
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Mathematical Needs and Future Research
IDAES Is Not Done...(End Of The Beginning...)

Decomposition — reduce complexity

— This is no longer hierarchical

— Spatial, temporal, uncertainty all matter

Overall problem: MINLP - continue to find ways to solve higher fidelity
— Decompose by: space, time, uncertainty

— We need an optimization strategy that decomposes the problem into linked components with
explicit coupling information
+ We need fast, scalable algorithms for each component
* We need robust iterative approaches to resolve coupling equations\
* We need to use ML/Al methods

Parallelized Dynamic Optimization Algorithms — much (!) better NLP
Extensible modeling approaches to support capturing and exploiting higher levels of

abstractions
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The Engines for Nonlinear Optimization

SQP

Don’t Search! - Solve
Optimality conditions

directly

Newton-based, optimization
solvers

Large-scale: fast, global
convergence properties

Exact 1st & 2nd derivatives

Exploit structure, parallelism
at linear algebra level

Interface with external objects
Efficient NLP solvers allow
>106 variables, constraints.
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Extended Models: Continuous Optimization
for (Some) Discrete Decisions

Min Overall Objective

s.t. Conservation Laws
Performance Equations
Constitutive Equations
Process/Product Specifications

\

Minimize Gibbs Free Energy Minimize Utilities
(Phase/Chem. Equilibrium) (Heat Integration)

- Consider MPCCs derived from Bi-level Optimization
IDAES



LNG Spiral Wound Heat Exchangers

Ding et al. (2017)

Optimal MR
Composition
(. Spiral wound heat exchanger ) .
|
(SWHX): tubes coiled around central .
. . . Nitrogen 0.046
rod with shell fluid flowing over tubes Meth 0.404
. . . ethane K
+ SWHX streams discretized to finite
. Ethane 0.5
\_ €elements to solve heat equation Y,
Propane 0.05
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Optimum Multi-Phase LNG SWHX

[ Warm Bundle ] [ Cold Bundle ]
-130 —— T_LMR-H
—40 T_NG
Temperature T LMR-C
— -135 =
G -60 1 &
g Z
= T —140
5 -80 E
2 g
vl ¥ -145
E —100 £
K} [
—150
-120
Temperature 1ss
-140 1 3 s S . i % o 3 5 7 s 11 13 15 17 19
Node
10 10
08 08
g‘C)G E‘QG
-4 ©
3
04 S o4
—— R_LMR
oz . i i‘EER 0.2 { —— R_LMR-H —r :
Liquid Fraction R — R_NG Liquid Fraction
oo : . : . ; T . — 00 {{— RIMR-C
3 5 7 9 11 13 15 17 19 T T T T T T T T T
Node 1 3 5 7 9 1 13 15 17 19

Node




Data-Driven Surrogate Models: Main Ingredients
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Do surrogate models extend to optimization?
- Accurate fit?

E - Well-poised models?

- Preserve the physics?




IDAES

... Even good surrogate models
may not lead to accurate optimal!

* Optimizer can exploit small errors and cheat 1 T model
 Example: Enthalpy of vapor stream H _

)Y P e
Propose surrogate r(T,P) =~ H(T,P)

P
Z—I; ~ 0 at high T and low P (equality holds for ideal gas)

or
However, supposed op— € atsome T, P

This means that an arbitrarily accurate surrogate can give us
compressors that create work!

* Need to add some ‘Reality’ to control the errors!

v



Trust Region Filter (TRF) Algorithm (w/TM gradients)

y = ndw) = 7(w) + (E(wi) — 7(wy)) + (VE(w) — ViE(wi))T(w — wy)

Converges for “any” $ K= K+
~ . e
surrogate model (W) [ Build k-FL model — J€
Ratio test|on 6(Xk+1)
to incyease,
decre{se, or
maintain radius

STOP [ A > X?

Y

[ Solve TRSP ]

Xk+1 = Xk + Sk
8 Xk+1 = Xk + Sk
Increase TR radius @ "’ ]

k=k 0 - type step

f - type step W
Decrease TR radius -
Xee1 = X J Unacceptable to filter
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Carbon Capture with Membrane Contactors
(Pedrozo et al.,2024)
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Integrated Multi-Model Solution strategy

|
 Regenerator
I model

Trust region I

sub problem (NLP) Objective function:
. T CO, avoided cost of
gt fw,w,y) the capture process

[

l ——————————

I 1
[

Framework for

|
|
|
trust region I

s.-t. h(v,w,y) =0 ——_____ simple model units

and economic models

| I
| |
|
I .. <
| filtermethod 1 — gw,w,y) <0 N , o
“ I = rocess specifications
: A I 4 rk(W) \
Jupyter | .
| I Surrogated Rigorous models
'_____!____I \
Tl P ‘ I Trust-region constraints
_______ n |
|
Hollow fiber ‘/ |
|

membrane model
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Optimal Results: Performance Metrics

CO; avoided cost ($/t-CO,) 118.01 54.16 -54%
Capital cost (MMS$) 105.80 39.74
Operating cost (MM$/y) 12.52 9.52
Total annual cost (MM$/y) 35.23 17.87
Reboiler demand (G)/t-CO,) 4.68 3.52
Capture cost ($/t-CO,) 76.19 39.71
CO; recovery (%) 92.43 90.00

IDAES
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Summary and Conclusions

Fast Equation-Oriented Optimization is a reality
Fast NLP tools, parallelized, with sensitivity
Powerful modeling tools, esp. for structured large-scale models

Optimization extensions to dynamic systems and under uncertainty

NLP - MPCC

Switching models as NLPs with Complementarities
Multi-phase Phase Transitions for VLE Models

Well-posed EO reformulation - fast solutions

Multi-scale Optimization
Heterogeneous models (PDAE/DAE/AE)

Wealth of reduced/surrogate models

Convergent TR-based optimization strategies

IDAES Huge Potential for Process Optimization Applications



