IDAES – Where Now?

Revisiting The Original Vision: Foundational & Mathematical Needs – Planning For The Future

Marriott City Center, Pittsburgh

September 18, 2024

Why Are We Here?

"Would you tell me, please, which way I ought to go from here?' said Alice. 'That depends a good deal on where you want to get to,' said the Cat. 'I don't much care where - 'said Alice. 'Then it doesn't matter which way you go,' said the Cat."

IDAES has choices to make – where to invest and what drivers to pay attention to that can be influenced by mathematics – modeling for sure but optimization and real time control

Computational mathematics for realtime, *in situ* **optimization and decision-making applied to largescale, complex systems**

You've got to be very careful if you don't know where you are going, because you might not get there.

[Yogi Berr](https://www.brainyquote.com/authors/yogi-berra-quotes)a

Contract Contract Contr

Key Points

- o IDAES applications ***and*** technology *have been really instrumental in moving things forward for PSE* – this has been a great program from 2017-today
- o Applications are now the current focus *there is a broad footprint which is great*
- o Having said this *we are now greedily eating our seed corn*
- o *What this means is that underlying technology – "math" – is a necessary investment* (and does not come overnight or for free) and has diminished from the IDAES (read: DOE) portfolio

2017 Visi^{on} Core Enabling Technologies for IDAES

Hectric System O

Software and Computational Infrastructure

- open-source, algebraic modeling language with rich programming capabilities
- advanced solvers / architectures
- full data provenance (DMF)

Modeling Framework & Library

- library of process unit operations
- rigorous thermo, properties multiphase physics
- grid operation and planning models¹

Machine Learning / Parameter Est.

- physical properties, thermodynamics reaction kinetics
- multi-scale surrogate modeling and optimization

Nonlinear Simulation & Optimization - design, operations, estimation - optimal control and dynamics, trajectory, state estimation - rigorous embedded black-box

Discrete Optimization (MILP/NLP) design, integration, intensification - materials optimization - grid integration, market analysis, grid operations and planning

Uncertainty Quant. / Optimization - comprehensive, end-to-end UQ - efficient sensitivity analysis - two-stage stochastic programming - robust optimization, adaptive robust optimization

Things Are Changing…

District Energy

Abstraction: all of these are "dynamic architectures" – dynamics (resource allocation on a network) and "changing the network" (robust, resilient)

metric networks

Mathematical Needs and Future Research IDAES Is Not Done…(End Of The Beginning…)

- **Decomposition – reduce complexity**
	- This is no longer hierarchical
	- Spatial, temporal, uncertainty all matter

• **Overall problem: MINLP – continue to find ways to solve higher fidelity**

- Decompose by: space, time, uncertainty
- We need an optimization strategy that decomposes the problem into linked components with explicit coupling information
	- We need fast, scalable algorithms for each component
	- We need robust iterative approaches to resolve coupling equations\
	- We need to use ML/AI methods
- **Parallelized Dynamic Optimization Algorithms – much (!) better NLP**
- **Extensible modeling approaches to support capturing and exploiting higher levels of abstractions**

The Engines for Nonlinear Optimization

State of Art Optimization Modeling Platform

*Extended Models***: Continuous Optimization for (Some) Discrete Decisions**

LNG Spiral Wound Heat Exchangers

- Spiral wound heat exchanger (SWHX): tubes coiled around central rod with shell fluid flowing over tubes
- SWHX streams discretized to finite elements to solve heat equation

Optimum Multi-Phase LNG SWHX

Data-Driven Surrogate Models: Main Ingredients

... Even good surrogate models may not lead to accurate optima!

- Optimizer can exploit small errors **and cheat**
- Example: Enthalpy of vapor stream

Propose surrogate $r(T, P) \approx H(T, P)$

 ∂H ∂P ≈ 0 at high T and low P (equality holds for ideal gas)

However, supposed $\frac{\partial r}{\partial x}$ ∂P $= -\epsilon$ at some T, P

This means that an arbitrarily accurate surrogate can give us **compressors that create work!**

• Need to add some 'Reality' to control the errors!

Truth model Surrogate model

H

P

Trust Region Filter (TRF) Algorithm (*w/TM gradients***)**

 $y = r_k(w) = \tilde{r}(w) + (t(w_k) - \tilde{r}(w_k)) + (\nabla t(w_k) - \nabla \tilde{r}(w_k))^T(w - w_k)$

Carbon Capture with Membrane Contactors (Pedrozo et al.,2024)

Models for simple units (heat exchangers and pumps) are implemented in Pyomo directly

Integrated Multi-Model Solution strategy

Optimal Results: Performance Metrics

Performance of TRF algorithm

33 Iterations (1080 CPUs) of the trust-region filter method

Summary and Conclusions

Fast Equation-Oriented Optimization is a reality

Fast NLP tools, parallelized, with sensitivity Powerful modeling tools, esp. for structured large-scale models Optimization extensions to dynamic systems and under uncertainty $NI P \rightarrow MPCC$

Switching models as NLPs with Complementarities Multi-phase Phase Transitions for VLE Models Well-posed EO reformulation \rightarrow fast solutions Multi-scale Optimization

Heterogeneous models (PDAE/DAE/AE)

Wealth of reduced/surrogate models

Convergent TR-based optimization strategies

Huge Potential for Process Optimization Applications