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• What is a capacity expansion model? – Determining lease cost deployment of 
technologies to meet future load demand over multi-decade horizons in a region (state, 
ISO/RTO, nationwide)
– What technologies/ designs deployed, when and where?
– What generators will be retired, renewed and what technologies are phased out?

• At the core, an expansion planning model considers
– Systems with >𝟏𝟏𝟏𝟏𝟐𝟐 generators, >𝟏𝟏𝟏𝟏𝟑𝟑 transmission lines,
– Balancing loads over each of 𝟏𝟏𝟏𝟏𝟔𝟔 time periods,
– With numerous opportunities to install, extend, and retire assets,
– And significant uncertainty in all parameters (generator costs, available technology, load 

growth and patterns, renewable resources),

• Too large to “directly solve”

• Numerous simplifications and approximations to develop “tractable” models which will 
impact accuracy
– ACOPF  DCOPF  Transshipment
– Full network  “skeletonized” network  “copper plate”
– Individual generators  generator clusters
– Full time horizon  representative days  representative loads
– Discrete decisions  continuous relaxations

Expansion Planning and Why it is Hard
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• Integrated Energy Systems must be designed for the system 
– Designing in isolation (e.g., “max efficiency”) does not guarantee participation / 

revenue from the market

• Existing expansion planning models focus primarily on capacity
– Operability (e.g., the role of dynamics, flexibility, and uncertainty) is not 

explicitly included, leading to results that overvalue LCOE and undervalue 
dispatchability and flexibility

– New and diverse set of technologies needed to reach decarbonization goals
– Advanced algorithms required to solve new, challenging problems

• Extending expansion planning models is more than just adding features
– Scaling up the model requires exploring new algorithmic approaches to solving 

the model. Model is open, allowing for customization for the problem you 
are interested in addressing

Why is IDAES Developing Expansion Planning Models?
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Improve/ develop new 
algorithms to address 
convergence challenges

Solving Problems that Represent Today’s Challenges
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San Diego County Case Study

ISO/RTO Scale Problem

Advanced Algorithms H
igher C

om
plexity

Improved capabilities in models (e.g. reliability)

Begin with smaller, less complex models (smaller regions/ 
time-scales)

Improved capability to 
address challenging 
problems on complex models



Reliability motivation

5[1] Ben Hill, Niamh Cavanagh, Sarah Grealish, “POWER OUT Texas outage map: When will power be back on?”, THE U.S. Sun, February 18, 2021 

• Reliability      An ability of power systems to supply uninterrupted electricity to satisfy the demand.
• Why is it important? 
   Failure of components in power systems leads to major disruptions 
      (e.g., 2021 Texas Outage)
• Adding extra generators, batteries, and transmission lines can improve the reliability 

of power systems.
• In case some generators fail, other connected generators can replace the workload 

of failed ones to minimize power loss.
• Issue: optimize where, when, and what type and size of generators and transmission lines 

should be added to satisfy the load demand while improving reliability at a minimum cost. 



Reliability definition
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Design reliability (Resource adequacy)[2] Operational reliability (or flexibility)[3]

[2] NREL, Resource Adequacy, https://www.nrel.gov/research/resource-adequacy.html
[3] NREL, Operational Reliability, https://www.nrel.gov/research/operational-reliability.html
[4] Generating Unit Statistical Brochure (2020), https://www.nrc.gov/reading-rm/basic-ref/glossary/outage.html

• The ability to supply enough electricity
• Focus on ensuring sufficient capacity.

• Measured by the probability of failure 
(inherent properties of generators and lines)

• Renewable generators are known to have 
lower probability of failures than 
dispatchable generators[4].

• Evaluated by two factors: loss of load 
expectation (LOLE) and expected energy 
not served (EENS)

• The ability to balance supply and demand 
and rapidly respond to unexpected events.

• Focus on optimizing operation strategies

• Dispatchable generators are known to be 
more flexible than renewable generators.

• Evaluated by load shedding (unmet 
demand)

https://www.nrel.gov/research/resource-adequacy.html
https://www.nrel.gov/research/operational-reliability.html


Reliability evaluation

7[4] Generating Unit Statistical Brochure (2020), https://www.nrc.gov/reading-rm/basic-ref/glossary/outage.html

1) LOLE (Loss of Load Expectation, unit: hours): 
     the time of not satisfying the load demand.

2) EENS (Expected Energy Not Served, unit: MWh): 
the amount of demand that is not satisfied.

LOLE & EENS ↓ 

  Power System Reliability ↑
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Model 1 : Expansion planning model without reliability
Generalized Disjunctive Programming (GDP) model[5,6]

Investment constraints
• Installation/lifetime extension/early retirement of dispatchable generators
• Installation of renewable generators and battery & transmission lines

Min Cost = CAPEX + OPEX + Curtailment penalty

• Power balance and unit commitment for dispatchable generators
• State of charge/discharge of battery (storage systems)
• Power flow of transmission line (simple network and DC power flow)
• CO2 emission estimation & minimum share of renewable generation

Operation & reliability constraints

s.t.
Python 3.10.12 

Pyomo 6.6.2

[5] I. E. Grossmann et al., “Systematic Modeling of Discrete-Continuous Optimization Models through Generalized Disjunctive Programming”, AIChE Journal, 2013
[6] F. Trespalacios et al., “Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Method”, Chemie Ingenieur Technik 86, 2014
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Model 2 : Reliability-constrained planning model
Generalized Disjunctive Programming (GDP) model[5,6]

Investment constraints
• Installation/lifetime extension/early retirement of dispatchable generators
• Installation of renewable generators and battery & transmission lines

Min Cost = CAPEX + OPEX + Curtailment penalty 
 + Design reliability penalty (LOLE and EENS penalties)

• Power balance and unit commitment for dispatchable generators
• State of charge/discharge of battery (storage systems)
• Power flow of transmission line (simple network and DC power flow)
• CO2 emission estimation & minimum share of renewable generation
• Probability of each failure state using a forced outage rate of generators and/or transmission lines
• Estimation of power production under each failure state
• Simplified LOLE (loss of load expectation) and EENS (expected energy not served) estimation 

Operation & reliability constraints

s.t.
Python 3.10.12 

Pyomo 6.6.2

Rigorous LOLE and EENS analysis requires the enumeration of all capacity failure states of all facilities. 
However, this work only considers the failures of some critical nodes and facilities. 

[5] I. E. Grossmann et al., “Systematic Modeling of Discrete-Continuous Optimization Models through Generalized Disjunctive Programming”, AIChE Journal, 2013
[6] F. Trespalacios et al., “Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Method”, Chemie Ingenieur Technik 86, 2014



Algorithm for reliable expansion planning
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• Installation of generators and battery & transmission lines
• Unit commitment, stage of charge/discharge, DC power flows
• Fuel consumption and CO2 emission estimation
• Enumeration of capacity failure state and probability of state
• LOLE and EENS estimation

Min Cost = CAPEX + OPEX + Curtailment penalty 
                    + Design reliability penalties (i.e. LOLE and EENS penalties)

s.t.

Model 2. Reliability-constrained planning model

• Installation of generators and battery & transmission lines
• Unit commitment, stage of charge/discharge, DC power flows
• Fuel consumption and CO2 emission estimation

Min Cost = CAPEX + OPEX + Curtailment penalty
s.t.

Model 1. Expansion planning model w/o reliability

Using the optimal results of Model 1, 
 Identify N numbers of critical nodes where the power loss is 

expected to be significant in the event of a failure.
 Select N numbers of critical generators that largely account for 

demand satisfaction. 



Case Study: Resource & Technology Status of San Diego County in 2021 

[7] Figure: https://cecgis-caenergy.opendata.arcgis.com/documents/CAEnergy::california-electric-generation-and-
transmission-system-part-2-of-2, modified 2021-12-14

< Generation and transmission network in 2021 >
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https://cecgis-caenergy.opendata.arcgis.com/documents/CAEnergy::california-electric-generation-and-transmission-system-part-2-of-2
https://cecgis-caenergy.opendata.arcgis.com/documents/CAEnergy::california-electric-generation-and-transmission-system-part-2-of-2


Case Study: Representation of San Diego County 
 Horizon: 10-year planning (planning interval: 2 

years, a total of 5 planning periods)
 5 representative days and 24 hours for each day 

(operation interval: 2 hours, a total of 12 operation 
periods)

 Size: 4 nodes
 Demand and supply nodes
 Supply-only nodes

Assumptions
 Generator types: NG (Simple cycle), NGCC (w/o 

CCS), NGCC (w/ CCS), Wind turbine, PV, and Li-
ion battery. 

 Supply-only nodes (green circle) can only install 
renewable generator and batteries.

 Dispatchable generators in demand and supply 
nodes (red circle) can be extended, dispatchable 
generators (w/ and w/o CCS) can be installed, and 
renewable generators can be installed.

 Distance between nodes is estimated by measuring 
the distance between centers of each node.Latitude/Longitude

 ① 32.210880 / -117.190754   ② 33.232716 / -116.320088 
 ③ 32.702726 / -116.270649   ④ 32.590562 / -116.802113
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Case Study: Scenario generation
California Policy and Regulatory Environment[8]

[8] California Peaker Power Plants: Energy Storage Replacement Opportunities, PSE Healthy Energy, 2020

Case 1 Case 2 Case 3

Solution A Solution B Solution A Solution B Solution A Solution B

The power load should always be satisfied (Loadshedding is not allowed)  Operation reliability should always be maximized 

Design reliability penalties 
(LOLE, EENS penalties) x √ x √ x √

CO2 emission limits 
(30% reduction by 2030)1 x x √ √ √ √

Renewable generation share 
(60% of the total generation by 2030)2 x x x x √ √

1 It is assumed that CO2 emissions should gradually decrease over the planning horizon and reach a 
30% reduction by 2030. 
2 60% of the power demand should be satisfied by renewable generations and storage by 2030. It is also 
assumed to increase gradually.  

13
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Python 3.10.12, Pyomo 6.6.2 
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Case 1 – No regulation on CO2 emission & renewable generation 
- 5 representative days (4 representative days + 1 day with the highest demand and lowest capacity factor)

• Total available capacity in Y10: Case 1A – 3,593MW, Case 1B – 4,216MW (15% ↑)

• The total cost is calculated after multiplying the weighting factor.

1 Generation only includes the amount of electricity used to meet the demand. 
Curtailment, the amount of electricity used to charge the battery, is not included.

 The generation from the battery indicates the amount of electricity discharged.

# Binary # Continuous # Constraint CPU (sec) Gap (%)
Case 1A 39,767 80,585 271,353 88.5 0.9779
Case 1B 58,987 102,346 379,579 13.3 0.4119 Gurobi 10.0.2
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• Reliability is largely provided by extended life of simple cycle gas turbines.
• Some solar panels are installed as the probability of failure of solar panels is lower, but limited due to 

operational reliability (flexibility).
• Renewables, in general, are limited due to transmission and relatively higher costs.
• Increased cost largely due to lifetime extension. 
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Python 3.10.12, Pyomo 6.6.2 
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Case 2 – Only regulation on CO2 emission (-30%)

• Total available capacity in Y10: Case 2A – 3,625MW, Case 2B – 4,036MW (10% ↑)

• The total cost is calculated after multiplying the weighting factor.

1 Generation only includes the amount of electricity used to meet the demand. 
Curtailment, the amount of electricity used to charge the battery, is not included.

 The generation from the battery indicates the amount of electricity discharged.

# Binary # Continuous # Constraint CPU (sec) Gap (%)
Case 2A 39,767 80,585 271,358 6,825 0.9959
Case 2B 58,967 102,346 379,549 40.4 0.9294 Gurobi 10.0.2
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• Reliability still largely provided by lifetime extensions of simple turbines.
• CO2 emission cuts largely provided by NGCC with CCS.
• Increase in cost in Case 2B largely driven by lifetime extension costs.



Case 3 study results 
Python 3.10.12, Pyomo 6.6.2 
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• Total available capacity in Y10: 
    Case 3A – 8,385MW, Case 3B – 8,651MW (3%)

• The total cost is calculated after multiplying the weighting factor.

1 Generation only includes the amount of electricity used to meet the demand. 
Curtailment, the amount of electricity used to charge the battery, is not included.

 The generation from the battery indicates the amount of electricity discharged.

# Binary # Continuous # Constraint CPU (sec) Gap (%)
Case 3A 39,767 80,585 271,363 25,200 8.4181
Case 3B 58,967 102,346 379,564 233.2 8.1096 Gurobi 10.0.2

No Design Reliability (Case 3A)
Installed capacity

With Design Reliability (Case 3B)  
Installed capacity
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• Solar penetration higher because of higher reliability of solar generators.
• No CCS installed (emission cuts achieved through renewables).
• Min 60% renewable case results in drastically increased capacity requirements. 

Dispatchable power required effectively equivalent.
   Case 3B disp. – 3,728MW, Case 2B disp.– 3,838MW

Case 3 – CO2 emission (-30%) & renewable generation (min 60%)
- 5 representative days (4 representative days + 1 day with the highest demand and lowest capacity factor)
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Accounting for Intermittency and Volatility
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• “Representative Days Only” 
underestimates total required 
capacity

• More dispatchable capacity required 
with inclusion with extreme 
scenarios

Representative Days Only Additional Capacity and 
Ramp Constraints

• “Non-representative” capacity and ramp scenarios critical in 
understanding dispatchable unit requirements

• Modified algorithm provides insights into low renewable capacity and/or 
rapid dispatchable ramp scenarios

• Lazy capacity constraints
• Extreme ramp events  

* SPP scenarios under high carbon tax

SPP Case Study



Impact of extreme day on the optimal design
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Python 3.10.12, Pyomo 6.6.2 

• The total cost is calculated after multiplying the weighting factor.

Revisit Case 3  (30% CO2 emission cut and 60% renewable generation)
- original case : 5 representative days (4 avg. days + 1 extreme day with the highest demand and lowest capacity factor)
- w/o op. reliability : 4 representative days (w/o extreme day)

Case 2B (5 Rep. days) – Installed capacity
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• When extreme day with the lowest capacity factor for 
wind and solar is excluded, the capacity required is 
significantly reduced.

w/   Reliability – “5 days”: 8,651MW, “4 days”: 4,744MW 
w/o Reliability – “5 days”: 8,385MW, “4 days”: 4,739MW

• Design reliability does not significantly affect the results 
of “4 days” method, because renewable generators 
themselves can increase design reliability.
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• Inclusion of reliability in GTEP models is difficult and requires new solution 
algorithms

• Reliability impacts the solution, and other tools don’t consider it

• GTEP models are difficult to solve in general, with simplifying assumptions 
required for tractability. The IDAES GTEP model is open and flexible to tailor 
the problem and solution to a specific problem that may be of interest.

• End goal: ISO scale GTEP models that return an optimal and operationally 
feasible solution that can be verified and validated seamlessly with tools such 
as PRESCIENT

Conclusions
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