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Chemistry governs operation of water treatment
processes, but is difficult to model

WaterTAP typically uses property packages for non-electrolyte
solutions

1. Non-electrolyte -> components are water and salt (i.e., NaCl, TDS,
etc)
* Properties =
f (salt concentration, temperature, pressure)

» Good for bulk properties like density, osmotic pressure,
viscosity, specific enthalpy

Components | Carbonation Process
2. Electrolyte -> components are water and all the potential species Na H20 &= H+ + OH-
» Must track numerous electrolyte species and chemical K CaOH+ &-> Ca2+ + OH-
. Ca CaHCO3+ «-> Ca2+ + HCO3-
reactions M
. _ - . _ _ C? CaCO3 €= Ca2+ + CO32-
. Esse.n.tlal.for ion activities, solubility/scaling tendencies, Sou H2CO3 €= CO2 (aq) + H20
precipitation HCO3 H2CO3 €<-> H+ + HCO3-
Si _ )
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Chemistry governs operation of water treatment
processes, but is difficult to model

WaterTAP typically uses property packages for non-electrolyte
solutions

1. Non-electrolyte -> components are water and salt (i.e., NaCl, TDS,
etc) AR

. p . . ' ",

4 Electrolyte theoretical models have numerous terms and parameters to ~~a_
represent all of the interactions (e.g., MSE, Pitzer, eNRTL)

* 9. Data availability limits the species that can be considered
Vil Inherently large models with many complications
« Numerous species and reactions _
- Species can be at 0 concentration and increase by many orders of [ation Process

2. Electrol magnitude (round-off errors can be problematic) p H+ + OH-
. o5 oo <> Caz+ + OH-

. Ca -
reactions M CaHCO3+ <> Ca2+ + HCO3
. _ - - _ _ C? CaCO3 <= Ca2+ + CO32-
« Essential for ion activities, solubility/scaling tendencies, o H2CO3 €~ CO2 (aq) + H20

precipitation HCO3 H2C03 €= H+ + HCO3-

Si i _
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WaterTAP has 3 approaches for water chemistry

All approaches use external water chemistry software:

1. Narrow surrogate models
* Inputs are the key decision variables of the flowsheet

« Polynomial functions, Radial basis functions (interpolative model), etc.

2. Broad surrogate models

* Inputs are apparent species concentrations, pH, pressure, temperature

* Neural net (machine learning model)

3. Direct integration (Demo on Thursday at 5 PM)

 Use pyomo External Grey Box Model

 Requires the external water chemistry software to provide the Jacobian (and Hessian)

. Possible with Reaktoro-pse (Repository on watertap-org)

Reaktoro
for Python and C++

ONAWI



https://pyomo.readthedocs.io/en/stable/contributed_packages/pynumero/pynumero.interfaces.external_grey_box_model.html
https://reaktoro.org/

Building and integrating surrogate models

&, python’
1. Generate relevant brine scenarios ; TV ——
Water = # Concentrations
TAP &
2. Use OLI Cloud API to calculate
properties for brine scenarios oL Sroperty predictions

3. Use IDAES tools to fit or integrate

models into IDAES compatible

Surrogate model

mOdels V1= fyl.(jcl' s Xp)
WaterTAP flowsheet Yn = fyn(X1, o, xn)
4. Use WaterTAP flowsheet with the ol ST
I ERD
OLI surrogate model

ONAWI




Our first approach was narrow surrogate models

Soda ash Optimized chemical dosing and RO
0oda as . .
Brackish Softening Recarbonation RO 1 design and operation

Feed Product D

— — CAPEX
[] OPEX
\/ [0 Softening
Sludge ~
° 1 \\ ERD W_aste» [] Recarbonation
~ N 10 ] Pump 1
~< 2 3 g [ RO 1
<N & ERD
~ . \ ;
Surrogate modeling tools O
Watgr che.mistry compatible with WaterTAP 8 0.5 -
simulations
systems, inc. ffffff&Jfffffffffﬁ
. . . — — == —

1. Chemical precipitation f(soda ash) v v v -y AP 27 27 i
2. pH adjustment f(soda ash, CO2) 0.0 : — .
3. Mineral scaling prediction f{ soda ash, CO2 dose, 50 60 70 080 90

pressure, water recovery) Water recovery (%)
ONAWI 6
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Our first approach was narrow surrogate models

Soda ash Optimized chemical dosing and RO
oda as . .
Brackish Softening Recarbonation RO design and operation
Feed N Product 1.5
B N — CAPEX
- [0 OPEX
Sly= L v. o — [1_Softening
* Pros:

« Cons:
 Significant time requirements to achieve good accuracy and stability

* Require a low number of data points (10 to 100,000 points)
« Low computational requirements (relatively small expressions)

[N\

systel » Tailored data generation and training to minimize local minimums and
optimize accuracy
1. Cher « Surrogates can be only used for specific treatment train and feed water
2. pHa composition
3. Mine dl stalllly preuiCuult 1{ sUla aosril, LUz UUSC, 90
pressure, water recovery) Water recovery (%)
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Broad surrogate models are needed to assess different

train configurations and feed compositions

Proposed high recovery brackish

Large number of treatment train
configurations

« Use of recycle loops

* Multiple stages

« Different combinations of driving
forces

Water compositions vary
dramatically across US

ONAWI

water treatment train

-

—M—N

__Max. TDS ~35-40 g/L

BWRO
A/S & HCI <40 bar

Softening A/S & HCI <85 bar

~

SWRO

—E

Softening A/S & HCI MVC

I«

\

Max. TDS ~100 g/L A

Max. TDS ~300 g/L

/

lon concentrations (mg/L)

10000 [ Primary monovalent ions
1000 4T T Tt B lons of ntorest fo seatng.
T Ifl toxicity, and valorization
100 5 T J
=
1
0.1
0.01 -
0.001 |

& O b (R ® ?goofb%ov DO VP VR G VI O P A

~




Machine learning models can enable generation of
broad surrogate models

Enables adding neural networks to Pyomo
models:
« Supports dense and convolution layers

« Supports a number of activation functions

» Supports Keras and ONNX standards

Key Questions:

(1) Can deep neural networks provide broad range of
chemistry estimates?

(2) How does NN architecture impact solver like IPOPT

ONAWI

System state
(pH, Temp. ,etc. )

1o}

N2
[ J

Chemistry modifier
(HCI, NaOH etc.)

Apparent species
(Na, HCQOg3, etc.)

SSOAN
) C
@

tProduct water g

Feed — >
———— Desalination lon concentrations
leb process pH

- Pressure

=»{_ ScalingNN__ = ca/cite = Scaling tendency
=p1  Scaling NN = Gypsum = constraint
=»  Scaling NN |=» Barite =i NN estimate
=»| Scaling NN |=» Celestite = < point of solid
=»| Scaling NN __ p=»pH formation

Deep Neural Network

o D/
S '~S§\‘
\ﬁ}-

Single output
(Scaling tendency for specific phase,
Amount of solid formed,

pH etc.)




Machine learning models can enable generation of

broad surrogate models

Key Questions:

(1) Can deep neu
chemistry estir

(2) How does NN
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Machine learning models can enable generation of
broad surrogate models ... or suggest we add glue

Enables adding neural networks to Pyomo
models:
« Supports dense and convolution layers

Feed \
HCI

4Product water

Desalination

Brine

>
lon concentrations

. . . rocess
« Supports a number of activation functions 1 P pH
 Supports Keras and ONNX standards | - Pressure
=»{_ ScalingNN__ = ca/cite = Scaling tendency
. =p1  Scaling NN = Gypsum = constraint
Key Questions: _ =»|  Scaling NN | Barite =i NN estimate
(1) Can deep neural networks provide broad range of > Scaling NN > Celestite - < point of solid
chemistry estimates? —»{ Scaling NN |—» pH formation
(2) How does NN architecture impact solver like IPOPT
Stochastic;\lly generated Phretle.qC sirzula.tion NN training NN accuracy as function of
ata LU A — Scaling NNs NN validation |=»! data generation, data size,

lon composition, pH, pressure,
chemical dose

Solids precipitation fraction
Effluent pH

Precipitation NNs

USGS control set
lon composition, pH, pressure,
chemical dose

PhreeqC simulation

Scaling tendencies, Solid precipitation fraction, Effluent

pH

and NN architecture

Optimization
with NNs

)

ONAWI

NN architecture impact on
optimization stability

Dudchenko, A. V. & Amusat, O. Systems & Control Transactions (2024)




Tailoring data sampling is key for good accuracy

Simple exponential skewing of ion concentrations
provides closer match to real waters

N/

lon concentrations (g/kgw)
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Data size and NN architecture play a “secondary” role in

accuracy
100 100 -
[ Scaling tendency i ] Weigh decay = 0.0001
B pH after HCI addition : B Weigh decay = 1e-06
[] Precipitation fraction . T
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Large networks and fanh are key for use in EO frameworks

NN accuracy tested against USGS brackish water data set (non-synthetic data)
Solvability tested using NNs in a black box desalination model using USGS brackish water data set
Solved using IPOPT with MA27 linear solver — tested 500 different feed compositions and 2 different guesses

ONAWI
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NNs enable assessment of complex treatment trains
PHREEQC ML models for:

pH control
precipitation

mineral scaling

Flowsheets contained about 30 NN

models with 30,000 parameters each

Solved in <5 min.

18 decision variables (degrees of

freedom):

* 3 HCI acid doses, 3 antiscalant doses

« 2 lime doses, 2 soda ash doses

« 3 RO design and operating variables
« 2 MVC design and operating variables

(@

lon (mg/L) Case 1 Case 2
Na 739 1120
Cl 870 1750
K 9 15
Ca 258 150
Mg 90 33
SO4 1011 260
HCO3 385 250

Sr 3 0.08
SiO2 25 30.5
TDS 3397 3609
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Are our networks also suggesting we add “glue” to fix water

treatment?

NN accuracy for Scaling tendency
prediction:

« Average error: 0.9%

« 95t percentile of error: ~5%

« 99t percentile of error: 18.5%

Out of 56 simulations, 6 points had
poor estimates

NNs provide great accuracy on
“average” but can
unpredictably and rapidly
degrade in performance.

ONAWI
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Reaktoro-pse enables exact calculation, enabling us for the
first time to “fact check” the ML surrogates

Reaktoro-PSE integrates Reaktoro
chemistry models directly into
IDEAS and IDAES compatible
libraries.

Reaktoro-PSE blocks are applied to
estimate track changes in:

o pH

« Scaling tendencies

» Precipitation amount

Uses same database as ML
models imitating them as closely as
possible

ONAWI
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Reaktoro-pse enables exact calculation, enabling us for the
first time to “fact check” the ML surrogates

Reaktoro-PSE integrates Reaktoro
chemistry models directly into
IDEAS and IDAES compatible
libraries.

Reaktoro-PSE blocks are applied to
estimate track changes in:

o pH

« Scaling tendencies

» Precipitation amount

Uses same database as ML
models imitating them as closely as
possible

ONAWI
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There is no “best” method, but Reaktoro-pse is a great starting

point

Narrow surrogates
G10) ALAMO |

Broad ML surrogates

o

Reaktoro-pse

' Reaktoro
for Python and C++

Data quantity need
Data tailoring
Training time

Computational intensity
Stability in IPOPT

Error in estimates

100-100,000 pts
None to high
10-600 seconds

Very low (1-2x increase)

Medium (local minimum
issues)

~0-10% - depends on
surrogates

500,000-1,000,000 pts
High
>600 seconds

Low to Mid (2-5x increase)

Medium (local minimum
issues)

~0-30% Depending on
breadth of model and
components
Suffers from edge case
errors

N/A
N/A
N/A

Mid to high (5-50x increase)

TBD (~preliminary stability is

high, but sensitive to model
and Jacobian scaling)

Exact solution

ONAWI
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Thank you

« National Energy Technology Laboratory: David Miller, Tim Bartholomew, Markus Drouven, Andrew
Lee, Andres Calderon-Vergara, Adam Atia, Chenyu Wang, Marcus Holly, Travis Arnold, Hunter Barber,
Alejandro Garciadiego, Elmira Shamlou, Zhuoran Zhang, Savannah Sakhai

« Lawrence Berkeley National Laboratory: Deb Agarwal, Dan Gunter, Keith Beattie, Oluwamayowa
Amusat, Jangho Park, Ludovico Bianchi, Jennifer Stokes-Draught, Xiangyu Bi, Michael Pesce

« National Renewable Energy Laboratory: Ben Knueven, Ethan Young, Jared Allen, Jordan Macknick,
Kurby Sitterley, Kinshuk Panda, Zach Binger, Mukta Hardikar, Paul Vecchiarelli

« Oak Ridge National Laboratory: Srikanth Allu, Austin Ladshaw, Johnson Dhanasekaran, Fahim
Abdullah

 SLAC National Accelerator Laboratory: Alex Dudchenko

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
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lon (mg/L)| Case 1 Case 2
Na 739 1120
Cl 870 1750

K 9 15
Ca 258 150
Mg 90 33

S04 1011 260
HCO3 385 250
Sr 3 0.08
SiO2 25 30.5
TDS 3397 3609
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