
AI/ML Approaches to
Mixed-Integer Programming

Selin Bayramoglu1, George Nemhauser1, Nick Sahinidis1,2
1 H. Milton School of Industrial and Systems Engineering, Georgia Institute of Technology

2 School of Chemical & Biomolecular Engineering, Georgia Institute of Technology

2Georgia Institute of Technology

• Optimization for AIML
– Steepest descent
– Cyclic coordinate search

• AI/ML for optimization
– Use AI/ML to accelerate optimization algorithms
– Systematize heuristics for tuning, customizing, adapting optimization algorithms

AI/ML AND OPTIMIZATION

3Georgia Institute of Technology

• Algorithm tuning
– Decision to linearize MIQPs for CPLEX (Bonami et al., 2018)
– Partitioning variable domains in solving QCQPs (Kannan et al., 2023)

• Instance-specific learning
– First perform target (expensive) branching strategy and collect data, build a model and

continue solving with the learned strategy (Khalil et al., 2016)

• Offline learning
– Predicting good initial feasible solutions and redundant constraints for a family of

problems (Xavier et al., 2021)

AI/ML FOR (INTEGER) OPTIMIZATION

4Georgia Institute of Technology

• Pseudocost branching (Benichou et al., 1971)
• Strong branching (SB) (Applegate et al., 1995)

– Solves two LPs for each fractional binary at a node!
• Reliability branching (Achterberg et al., 2005)

– Reliable pseudocosts
• Hybrid branching (RPB) (Achterberg and Berthold, 2009)

– Single score that combines pseudocost scores, inference
values, number of cutoffs, etc.

BRANCHING IN INTEGER PROGRAMMING

𝒙𝒙𝟏𝟏 = 𝟏𝟏 𝒙𝒙𝟏𝟏 = 𝟎𝟎

𝒁𝒁

𝒁𝒁 + 𝜟𝜟𝟏𝟏+ 𝒁𝒁 + 𝜟𝜟𝟏𝟏−

𝐒𝐒𝐒𝐒 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝟏𝟏 = 𝒇𝒇(𝜟𝜟𝟏𝟏+,𝜟𝜟𝟏𝟏−)

5Georgia Institute of Technology

• Studies on learning to branch
– Ranking by SB scores, SVMrank (Khalil et al. 2016)
– SB scores, ExtraTrees (Alvarez et al. 2014, 2017)
– Selecting the best SB candidate, graph neural network (Gasse et al. 2019, Nair et al.

2020, Gupta et al. 2022)
– Ranking by default rule (RPB), deep neural network (Zarpellon et al. 2021)

• Theoretical results
– Balcan et al. (2017) use ML to find an optimal weighting of branching scores given an

input problem distribution

ML FOR BRANCHING

6Georgia Institute of Technology

Khalil et al. (2016)

INSTANCE SPECIFIC LEARNING

Learn
branching rule

Apply
learned rule

7Georgia Institute of Technology

OFFLINE LEARNING

Collect data
by solving

many similar
problems with

strong
branching

Build a model
of strong
branching

scores

Solve
problems from

the same
family with the

new rule

Create
datasets

Score ≈ 𝒇𝒇(Feature1,
Feature2, Feature3 , …)

8Georgia Institute of Technology

PROPOSED APPROACH

Collect data by solving many
similar problems with strong

branching

Build a model of strong
branching scores

Lasso, L0-regularized models

Solve problems from the
same family with the new ruleCreate datasets

Score ≈ 𝜷𝜷𝟏𝟏Solution value
+ 𝜷𝜷𝟐𝟐Objective coefficient
+ 𝜷𝜷𝟑𝟑Number of rows the
variable is in + …

Sparse machine learning models based on the LASSO, L0L1 and L0L2

9Georgia Institute of Technology

• Regularized linear regression-based branching rules speed up SCIP

• Training advantages in comparison to neural networks
– Short training times
– Perform well even when a fraction of the data is used for training

• No need for a GPU for training or deployment

MAIN RESULTS

10Georgia Institute of Technology

Features from Khalil et al. (2016) and Gasse et al. (2019)
– Static features

• Objective function coefficient of a candidate

• Number of constraints the candidate is in

– Dynamic features
• Solution point of the current node’s LP relaxation
• Solution infeasibility (most infeasible branching)
• Mean, minimum and maximum of the dual values for each constraint the candidate is in

• Up/down pseudocosts of the candidate, their weighted sum and product (hybrid branching,
pseudocost branching)

• Feature engineering
– Quadratic transformations

FEATURES

11Georgia Institute of Technology

• Sparse models are solutions to

 (y is the score vector, X is the training dataset)

• Penalizing number of nonzero coefficients and the norm of the solution vector

• The LASSO 𝝀𝝀𝟎𝟎 = 𝟎𝟎,𝝀𝝀𝟏𝟏 > 𝟎𝟎 glmnet (Friedman et al., 2010)

• L0L1 model 𝝀𝝀𝟎𝟎 > 𝟎𝟎,𝝀𝝀𝟏𝟏 > 𝟎𝟎 l0learn (Hazimeh et al., 2022)

• L0L2 model 𝝀𝝀𝟎𝟎 > 𝟎𝟎,𝝀𝝀𝟐𝟐 > 𝟎𝟎

SPARSE REGRESSION

Tibshirani (1995), Hazimeh and Mazumder (2020)

12Georgia Institute of Technology

COMPUTATIONAL SETTING

Problem Small Medium Large

Set Covering
(# rows, # cols)

500, 1000 1000, 1000 2000, 1000

Comb. Auctions
(# items, # bids)

100, 500 200, 1000 300, 1500

Max. Independent Set
(# nodes, affinity)

500, 4 1000, 4 1500, 4

Facility Location
(# customers, # facilities)

100, 100 200, 100 400, 100

Gasse et al., 2019

13Georgia Institute of Technology

ML MODEL SIZES

Model Number of parameters across all models
LASSO < 2000
L0L1 ≤ 50
L0L2 ≤ 50
GNN 64,000

14Georgia Institute of Technology

DEPLOYMENT TIMES FOR SMALL INSTANCES

15Georgia Institute of Technology

DEPLOYMENT TIMES FOR MEDIUM INSTANCES

16Georgia Institute of Technology

DEPLOYMENT TIMES FOR LARGE INSTANCES

17Georgia Institute of Technology

• Models with fewer parameters can be trained with a smaller sample size
– Solve instances and collect candidate data until we accumulate 25K observations in

the training and validation datasets
– GNN literature utilized 120K observations

• Training on the relevant input size can be more effective
– Train and test on instances of the same size

• Models trained with this scheme
– LASSO-P, L0L1-P and L0L2-P

EFFECTIVE SAMPLING

18Georgia Institute of Technology

LASSO-P performs the best in terms of solving time (9% faster than RPB)

LARGE SET COVERING PROBLEMS

GNN trained on small problems

19Georgia Institute of Technology

LASSO-P solves instances 27% faster than RPB

LARGE COMBINATORIAL AUCTIONS PROBLEMS

GNN trained on small problems

20Georgia Institute of Technology

L0L2-P reduces solving time by 81% compared to RPB

LARGE MAXIMUM INDEPENDENT SET PROBLEMS

GNN trained on small problems

21Georgia Institute of Technology

LASSO solves instances on average 5% faster than RPB

LARGE FACILITY LOCATION PROBLEMS

GNN trained on small problems

22Georgia Institute of Technology

Average training time of the GNN and the sparse models in hours

TRAINING TIMES

LASSO L0L1 L0L2 LASSO-P L0L1-P L0L2-P GNN

Set Covering 0.20 1.09 0.76 0.02 0.10 0.07 6.75

Combinatorial
Auctions

0.21 1.14 0.72 0.04 0.11 0.07 1.37

Facility Location 0.18 1.01 0.59 0.03 0.10 0.09 8.73

Max.
Independent Set

0.27 0.58 0.35 0.03 0.07 0.04 1.23

Small-instance sampling Effective Sampling

23Georgia Institute of Technology

• Base instance from minlp.org, contributed by Anjos and Conejo (2020)
• Six-node network with three generator nodes and three demand nodes

• Generate instances by varying the startup cost of G1 in [720, 880]

MINLP FOR AC-NETWORK CONSTRAINED UC

D1 D2 D3

G1 G2 G3Generators

Demands

800
5
[80, 300]
[-150, 150]

500
15
[50, 200]
[-100, 100]

250
30
[30, 100]
[-50, 50]

Start-up cost ($)
Variable production cost ($/MWh)
Active power output limits (MW)
Reactive power output limits (VAr)

100
75

90
67.5

50
37.5

Demand for active power at t = 1 (MW)
Demand for reactive power at t = 1 (VAr)

Apparent power capacity of lines (VA)
AC power flow equations
Voltage limits at every node

24Georgia Institute of Technology

Optimality gap limit of 5% and time limit of 1 hour of CPU time

EVALUATION

RPB: Default SCIP
FS: Full strong branching
RAND: Random
PS: Pseudocost branching
MI: Most infeasible
ML: Lasso-based branching
GN-C: CPU-based graph neural network
GN-G: GPU-based graph neural network

25Georgia Institute of Technology

• Sparse ML models
– Speed up SCIP
– Faster than a state-of-the-art ML rule, the GNN, on a CPU-only machine
– Do not require GPUs
– Work with small sets of measurements
– Rapid training

• Understand why certain features are selected in the models

CONCLUSIONS

	AI/ML Approaches to �Mixed-Integer Programming
	AI/ML and optimization
	AI/ml for (integer) OPtımızatıon
	Branchıng ın ınteger programmıng
	ML for branchıng
	Instance specific learning
	Offline learning
	Proposed approach
	Main results
	features
	SPARSE REGRESSION
	Computational setting
	Ml Model sizes
	Deployment Tımes for small ınstances
	Deployment times for medium instances
	Deployment Tımes for large ınstances
	effective samplıng
	Large set coverıng problems
	Large combınatorıal Auctıons problems
	Large Maxımum ındependent set problems
	Large facılıty locatıon problems
	Traınıng tımes
	Minlp for Ac-NETWORK constrained UC
	EVALUATION
	Conclusıons

