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• Optimization for AIML
– Steepest descent
– Cyclic coordinate search

• AI/ML for optimization
– Use AI/ML to accelerate optimization algorithms
– Systematize heuristics for tuning, customizing, adapting optimization algorithms

AI/ML AND OPTIMIZATION
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• Algorithm tuning
– Decision to linearize MIQPs for CPLEX (Bonami et al., 2018)
– Partitioning variable domains in solving QCQPs (Kannan et al., 2023)

• Instance-specific learning
– First perform target (expensive) branching strategy and collect data, build a model and 

continue solving with the learned strategy (Khalil et al., 2016)

• Offline learning
– Predicting good initial feasible solutions and redundant constraints for a family of 

problems (Xavier et al., 2021)

AI/ML FOR (INTEGER) OPTIMIZATION
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• Pseudocost branching (Benichou et al., 1971)
• Strong branching (SB) (Applegate et al., 1995)

– Solves two LPs for each fractional binary at a node!
• Reliability branching (Achterberg et al., 2005)

– Reliable pseudocosts
• Hybrid branching (RPB) (Achterberg and Berthold, 2009)

– Single score that combines pseudocost scores, inference 
values, number of cutoffs, etc.

BRANCHING IN INTEGER PROGRAMMING

𝒙𝒙𝟏𝟏 = 𝟏𝟏 𝒙𝒙𝟏𝟏 = 𝟎𝟎
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• Studies on learning to branch
– Ranking by SB scores, SVMrank (Khalil et al. 2016)
– SB scores, ExtraTrees (Alvarez et al. 2014, 2017)
– Selecting the best SB candidate, graph neural network (Gasse et al. 2019, Nair et al. 

2020, Gupta et al. 2022)
– Ranking by default rule (RPB), deep neural network (Zarpellon et al. 2021)

• Theoretical results
– Balcan et al. (2017) use ML to find an optimal weighting of branching scores given an 

input problem distribution

 

ML FOR BRANCHING
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Khalil et al. (2016)

INSTANCE SPECIFIC LEARNING

Learn 
branching rule

Apply 
learned rule
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OFFLINE LEARNING

Collect data 
by solving 

many similar 
problems with 

strong 
branching

Build a model 
of strong 
branching 

scores

Solve 
problems from 

the same 
family with the 

new rule

Create 
datasets

Score ≈ 𝒇𝒇(Feature1, 
Feature2, Feature3 , … )
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PROPOSED APPROACH

Collect data by solving many 
similar problems with strong 

branching

Build a model of strong 
branching scores

Lasso, L0-regularized models

Solve problems from the 
same family with the new ruleCreate datasets

Score ≈ 𝜷𝜷𝟏𝟏Solution value 
+ 𝜷𝜷𝟐𝟐Objective coefficient 
+ 𝜷𝜷𝟑𝟑Number of rows the 
variable is in + …

Sparse machine learning models based on the LASSO, L0L1 and L0L2
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• Regularized linear regression-based branching rules speed up SCIP

• Training advantages in comparison to neural networks
– Short training times
– Perform well even when a fraction of the data is used for training

• No need for a GPU for training or deployment

MAIN RESULTS
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Features from Khalil et al. (2016) and Gasse et al. (2019)
– Static features

• Objective function coefficient of a candidate

• Number of constraints the candidate is in

– Dynamic features
• Solution point of the current node’s LP relaxation
• Solution infeasibility (most infeasible branching)
• Mean, minimum and maximum of the dual values for each constraint the candidate is in 

• Up/down pseudocosts of the candidate, their weighted sum and product (hybrid branching, 
pseudocost branching)

• Feature engineering
– Quadratic transformations

FEATURES
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• Sparse models are solutions to

      (y is the score vector, X is the training dataset)

• Penalizing number of nonzero coefficients and the norm of the solution vector

• The LASSO  𝝀𝝀𝟎𝟎 = 𝟎𝟎,𝝀𝝀𝟏𝟏 > 𝟎𝟎 glmnet (Friedman et al., 2010)

• L0L1 model  𝝀𝝀𝟎𝟎 > 𝟎𝟎,𝝀𝝀𝟏𝟏 > 𝟎𝟎 l0learn (Hazimeh et al., 2022)

• L0L2 model  𝝀𝝀𝟎𝟎 > 𝟎𝟎,𝝀𝝀𝟐𝟐 > 𝟎𝟎 

SPARSE REGRESSION

Tibshirani (1995), Hazimeh and Mazumder (2020)
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COMPUTATIONAL SETTING

Problem Small Medium Large

Set Covering
(# rows, # cols)

500, 1000 1000, 1000 2000, 1000

Comb. Auctions
(# items, # bids)

100, 500 200, 1000 300, 1500

Max. Independent Set
(# nodes, affinity)

500, 4 1000, 4 1500, 4

Facility Location
(# customers, # facilities)

100, 100 200, 100 400, 100

Gasse et al., 2019



13Georgia Institute of Technology

ML MODEL SIZES

Model Number of parameters across all models
LASSO < 2000
L0L1 ≤ 50
L0L2 ≤ 50
GNN 64,000
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DEPLOYMENT TIMES FOR SMALL INSTANCES
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DEPLOYMENT TIMES FOR MEDIUM INSTANCES
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DEPLOYMENT TIMES FOR LARGE INSTANCES
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• Models with fewer parameters can be trained with a smaller sample size
– Solve instances and collect candidate data until we accumulate 25K observations in 

the training and validation datasets
– GNN literature utilized 120K observations

• Training on the relevant input size can be more effective
– Train and test on instances of the same size

• Models trained with this scheme
– LASSO-P, L0L1-P and L0L2-P

EFFECTIVE SAMPLING
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LASSO-P performs the best in terms of solving time (9% faster than RPB)

LARGE SET COVERING PROBLEMS

GNN trained on small problems
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LASSO-P solves instances 27% faster than RPB

LARGE COMBINATORIAL AUCTIONS PROBLEMS

GNN trained on small problems



20Georgia Institute of Technology

L0L2-P reduces solving time by 81% compared to RPB

LARGE MAXIMUM INDEPENDENT SET PROBLEMS

GNN trained on small problems
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LASSO solves instances on average 5% faster than RPB

LARGE FACILITY LOCATION PROBLEMS

GNN trained on small problems
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Average training time of the GNN and the sparse models in hours

TRAINING TIMES

LASSO L0L1 L0L2 LASSO-P L0L1-P L0L2-P GNN

Set Covering 0.20 1.09 0.76 0.02 0.10 0.07 6.75

Combinatorial 
Auctions

0.21 1.14 0.72 0.04 0.11 0.07 1.37

Facility Location 0.18 1.01 0.59 0.03 0.10 0.09 8.73

Max. 
Independent Set

0.27 0.58 0.35 0.03 0.07 0.04 1.23

Small-instance sampling Effective Sampling
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• Base instance from minlp.org, contributed by Anjos and Conejo (2020)
• Six-node network with three generator nodes and three demand nodes

• Generate instances by varying the startup cost of G1 in [720, 880]

MINLP FOR AC-NETWORK CONSTRAINED UC

D1 D2 D3

G1 G2 G3Generators

Demands

800
5
[80, 300]
[-150, 150]

500
15
[50, 200]
[-100, 100]

250
30
[30, 100]
[-50, 50]

Start-up cost ($)
Variable production cost ($/MWh)
Active power output limits (MW)
Reactive power output limits (VAr)

100
75

90
67.5

50
37.5

Demand for active power at t = 1 (MW)
Demand for reactive power at t = 1 (VAr)

Apparent power capacity of lines (VA)
AC power flow equations
Voltage limits at every node
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Optimality gap limit of 5% and time limit of 1 hour of CPU time

EVALUATION

RPB: Default SCIP
FS: Full strong branching 
RAND: Random
PS: Pseudocost branching
MI: Most infeasible
ML: Lasso-based branching
GN-C: CPU-based graph neural network
GN-G: GPU-based graph neural network
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• Sparse ML models
– Speed up SCIP 
– Faster than a state-of-the-art ML rule, the GNN, on a CPU-only machine
– Do not require GPUs
– Work with small sets of measurements
– Rapid training

• Understand why certain features are selected in the models

CONCLUSIONS
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