

AI/ML Approaches to Mixed-Integer Programming

Selin Bayramoglu¹, George Nemhauser¹, Nick Sahinidis^{1,2}

¹ H. Milton School of Industrial and Systems Engineering, Georgia Institute of Technology

² School of Chemical & Biomolecular Engineering, Georgia Institute of Technology

AI/ML AND OPTIMIZATION

Optimization for AIML

- Steepest descent
- Cyclic coordinate search
- AI/ML for optimization
 - Use AI/ML to accelerate optimization algorithms
 - Systematize heuristics for tuning, customizing, adapting optimization algorithms

AI/ML FOR (INTEGER) OPTIMIZATION

Algorithm tuning

- Decision to linearize MIQPs for CPLEX (Bonami et al., 2018)
- Partitioning variable domains in solving QCQPs (Kannan et al., 2023)

Instance-specific learning

- First perform target (expensive) branching strategy and collect data, build a model and continue solving with the learned strategy (Khalil et al., 2016)

Offline learning

 Predicting good initial feasible solutions and redundant constraints for a family of problems (Xavier et al., 2021)

BRANCHING IN INTEGER PROGRAMMING

- Pseudocost branching (Benichou et al., 1971)
- Strong branching (SB) (Applegate et al., 1995)
 - Solves two LPs for each fractional binary at a node!
- Reliability branching (Achterberg et al., 2005)
 - Reliable pseudocosts
- Hybrid branching (RPB) (Achterberg and Berthold, 2009)
 - Single score that combines pseudocost scores, inference values, number of cutoffs, etc.

ML FOR BRANCHING

- Studies on learning to branch
 - Ranking by SB scores, SVM^{rank} (Khalil et al. 2016)
 - SB scores, ExtraTrees (Alvarez et al. 2014, 2017)
 - Selecting the best SB candidate, graph neural network (Gasse et al. 2019, Nair et al. 2020, Gupta et al. 2022)
 - Ranking by default rule (RPB), deep neural network (Zarpellon et al. 2021)

Theoretical results

 Balcan et al. (2017) use ML to find an optimal weighting of branching scores given an input problem distribution

INSTANCE SPECIFIC LEARNING

Khalil et al. (2016)

OFFLINE LEARNING

Collect data by solving many similar problems with strong branching

Create datasets

Build a model of strong branching scores

Solve problems from the same family with the new rule

Score $\approx f(\text{Feature}_1, \text{Feature}_2, \text{Feature}_3, \dots)$

PROPOSED APPROACH

Sparse machine learning models based on the LASSO, LOL1 and LOL2

Score $\approx \beta_1$ Solution value + β_2 Objective coefficient + β_3 Number of rows the variable is in + ...

MAIN RESULTS

- Regularized linear regression-based branching rules speed up SCIP
- Training advantages in comparison to neural networks
 - Short training times
 - Perform well even when a fraction of the data is used for training
- No need for a GPU for training or deployment

FEATURES

Features from Khalil et al. (2016) and Gasse et al. (2019)

- Static features
 - Objective function coefficient of a candidate
 - Number of constraints the candidate is in
- Dynamic features
 - Solution point of the current node's LP relaxation
 - Solution infeasibility (most infeasible branching)
 - Mean, minimum and maximum of the dual values for each constraint the candidate is in
 - Up/down pseudocosts of the candidate, their weighted sum and product (hybrid branching, pseudocost branching)
- Feature engineering
 - Quadratic transformations

SPARSE REGRESSION

• Sparse models are solutions to

$$\hat{\beta} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \quad \frac{1}{2} \|y - X\beta\|_2^2 + \lambda_0 \|\beta\|_0 + \lambda_q \|\beta\|_q^q$$

(y is the score vector, X is the training dataset)

• Penalizing number of nonzero coefficients and the norm of the solution vector

- The LASSO $\lambda_0=0,\lambda_1>0$
- LOL1 model $\lambda_0 > 0$, $\lambda_1 > 0$
- LOL2 model $\lambda_0 > 0$, $\lambda_2 > 0$

glmnet (Friedman et al., 2010) *IOlearn* (Hazimeh et al., 2022)

COMPUTATIONAL SETTING

Problem	Small	Medium	Large	
Set Covering (# rows, # cols)	500, 1000	1000, 1000	2000, 1000	
Comb. Auctions (# items, # bids)	100, 500	200, 1000	300, 1500	
Max. Independent Set (# nodes, affinity)	500, 4	1000, 4	1500, 4	
Facility Location (# customers, # facilities)	100, 100	200, 100	400, 100	

ML MODEL SIZES

Model	Number of parameters across all models
LASSO	< 2000
LOL1	≤ 50
LOL2	≤ 50
GNN	64,000

DEPLOYMENT TIMES FOR SMALL INSTANCES

DEPLOYMENT TIMES FOR MEDIUM INSTANCES

DEPLOYMENT TIMES FOR LARGE INSTANCES

EFFECTIVE SAMPLING

• Models with fewer parameters can be trained with a smaller sample size

- Solve instances and collect candidate data until we accumulate 25K observations in the training and validation datasets
- GNN literature utilized **120K** observations
- Training on the relevant input size can be more effective
 - Train and test on instances of the same size
- Models trained with this scheme
 - LASSO-P, LOL1-P and LOL2-P

LARGE SET COVERING PROBLEMS

LASSO-P performs the best in terms of solving time (9% faster than RPB)

GNN trained on small problems

LARGE COMBINATORIAL AUCTIONS PROBLEMS

LASSO-P solves instances 27% faster than RPB

GNN trained on small problems

Georgia Institute of Technology

LARGE MAXIMUM INDEPENDENT SET PROBLEMS

LOL2-P reduces solving time by 81% compared to RPB

GNN trained on small problems

Georgia Institute of Technology

LARGE FACILITY LOCATION PROBLEMS

LASSO solves instances on average 5% faster than RPB

GNN trained on small problems

Georgia Institute of Technology

TRAINING TIMES

Average training time of the GNN and the sparse models in hours

	Small-instance sampling			Effective Sampling			
	LASSO	LOL1	LOL2	LASSO-P	LOL1-P	LOL2-P	GNN
Set Covering	0.20	1.09	0.76	0.02	0.10	0.07	6.75
Combinatorial Auctions	0.21	1.14	0.72	0.04	0.11	0.07	1.37
Facility Location	0.18	1.01	0.59	0.03	0.10	0.09	8.73
Max. Independent Set	0.27	0.58	0.35	0.03	0.07	0.04	1.23

MINLP FOR AC-NETWORK CONSTRAINED UC

- Base instance from minlp.org, contributed by Anjos and Conejo (2020)
- Six-node network with three generator nodes and three demand nodes

• Generate instances by varying the startup cost of G1 in [720, 880]

EVALUATION

Optimality gap limit of 5% and time limit of 1 hour of CPU time

CONCLUSIONS

• Sparse ML models

- Speed up SCIP
- Faster than a state-of-the-art ML rule, the GNN, on a CPU-only machine
- Do not require GPUs
- Work with small sets of measurements
- Rapid training
- Understand why certain features are selected in the models