

Flexible Environments for Generation and **Transmission Expansion Planning (GTEP) Analysis**

Kyle Skolfield, John Siirola

Sandia National Laboratories

Stakeholder Meeting 9/19/2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

lecr

GTEP is Large; It Contains Multitudes

- **Expansion planning** optimizes the investment and operational decisions of the bulk power system (generation and transmission) over a long-term, multi-decade planning horizon
- Deployed to guide investment portfolios while considering evolving grid (e.g., retirements and decarb), dynamic technology, and economic conditions
- Problem scale rapidly explodes into intractability based on network size and discrete decision selection

The set of GTEP-related questions is already enormous and growing rapidly

State-of-the-art (GTEP is hard)

Existing GTEP models are bespoke; i.e., highly individualized and tailored to specific questions or cases

Sample Models in Active Development

Features

- ✓ Well-established
- ✓ Large scale functionality (CONUS)
- ✓ High level aggregation

- Relaxed model
 - (LP)
 - Limited
 - disaggregation
 - capability
 - Rigid assumptions

- ✓ Flexible scale
- ✓ Relatively high configurability
- □ Entirely in Julia

Features

- Deterministic and/or myopic multi-stage optimization only
- Representative time periods repeatedly duplicated

IDAES

These tools are more flexible and can answer more questions than previous GTEP attempts, but are still *just models*

We Don't Want <u>A</u> Model

What is IDAES GTEP if Not a Model?

- Modeling Choices
- Appropriate network reductions
- □ Improved temporal multi-fidelity
- Case study independence
- □ Flexible investment options
- □ Common & verified flow models (e.g., EGRET)
- □ Consistent Verification & Validation (e.g.,

PRESCIENT)

We need a *superstructure* to explore multiple GTEP questions without creating new models

We Want A <u>Superstructure</u>

Superstructure (metamodel design)

IDEAS GTEP Superstructure is Built on an Ecosystem

IDAES GTEP builds on and interacts with established, trusted systems

How Do We Build a Superstructure?

Extensive Use of Generalized Disjunctive Programming

- Unit Commitment
- Investment
- Storage

GDP as a modeling framework enables easy selection of "menu items" to model – in isolation or jointly

GDP Defined

There is no such thing as a *BINARY* variable for yes/no decisions.

Enables Logical Constraints:

$$Y_{ik} \Rightarrow \begin{cases} M_{ik}x + N_{ik}z \le e_{ik} \\ r_{ik}(x,z) \le 0 \end{cases}$$

Problems naturally described by GDP:

- Yes/no decision sets
- No-overlap
- Equipment selection
- State alternatives
- "Choose exactly *n* of"

GDP formulation admits a common logical structure for any Boolean decision variables

Example of GTEP as GDP

GDP Gives Significant Advantages

• Flexibility

 Abstracts modeling decisions from specific case studies or implementations

Modularity

 Enables easy inclusion/exclusion of modeling subcomponents (e.g., storage, transmission investment, power flow approximation, etc.)

Comprehensibility

Results in cleaner, easier to understand codebase

Decisions	Flow Models	Temporal Scale
Generation	DCOPF	Identical Length
Transmission	Copperplate	Any Number
Storage		Non-uniform Length
Switching	ACOPF	
Reconductoring		

Sample Menu Items

Any case study in a standard format (e.g., RTS-GMLC) can be modeled with any set of assumptions *without* modifying data

Clean Math \Leftrightarrow Clean Code

@b.Disjunct(m.thermalGenerators)

def genOn(disj, generator):
 # operating limits
 b = disj.parent_block()

Minimum operating Limits

@disj.Constraint(b.dispatchPeriods)
def operating_limit_min(d, dispatchPeriod):
 return (
 m.thermalMin[generator]
 <= b.dispatchPeriod[dispatchPeriod].thermalGeneration[generator]
)</pre>

Maximum operating limits @disj.Constraint(b.dispatchPeriods)

def operating_limit_max(d, dispatchPeriod):

return (

b.dispatchPeriod[dispatchPeriod].thermalGeneration[generator]
+ b.dispatchPeriod[dispatchPeriod].spinningReserve[generator]
<= m.thermalCapacity[generator]</pre>

IJON gτ $\underline{p}_g \le p_{gt} \le \overline{p}_g$

@b.Disjunction(m.thermalGenerators)
 def genStatus(disj, generator):
 return [
 disj.genOn[generator],
 disj.genStartup[generator],
 disj.genShutdown[generator],
 disj.genOff[generator],
 disj.genOff[generator],

GDP permits direct translation between abstract math formulations and concrete code implementations

The whole IDEAS GTEP architecture can be built on trusted, unit-tested components (e.g., EGRET, PRESCIENT, etc.) in a plug-and-play fashion

Generalized Viz

What IDAES GTEP Is <u>NOT</u>

Simulation Tool

Policy Predictor

Stability Analysis

Market Model

What IDAES GTEP IS

Model Selection Optimization

Infrastructure Planning Optimization

Plant-Grid Interaction Optimization

Reliability / Resilience Optimization

Capabilities

Resilience Algorithmic AOS Automated (Dis-) Aggregation

Mid Future (<2 years)

Planning Decisions

- Flow ModelsACOPF
- Test Cases
 10,000 Bus Geolocated [including line paths] CA

Where do I find IDAES GTEP?

REPO

https://github.com/IDAES/idaes-gtep

DOCS

https://idaes-gtep.readthedocs.io/en/latest/

QUESTIONS/CONTACT

jkskolf@sandia.gov

