

Directly Integrating Water Chemistry from Reaktoro with Pyomo

Alexander Dudchenko, Ben Knueven, Ilayda Akkor

Surrogate models enable modeling chemistry but come with a range of limitations

Thermodynamic equilibrium calculation for chemistry (aqueous, organic, vapor, combustion etc.) requires use of external software:

• OLI, PHREEQC, etc.

Integration into IDAES, WaterTAP, etc. is enabled through:

- Narrow surrogate models
 - Limited to specific water and flowsheet
- Broad surrogate models
 - Require extreme data set and training time

Both methods suffer from local minimums and errors that can hinder equationoriented optimization methods.

	Narrow surrogates	Broad ML surrogates
Data quantity need	100-100,000 pts	500,000-1,000,000 pts
Data tailoring	None to high	High
Training time	10-600 seconds	>600 seconds
Computational intensity	Very low (1-2x increase)	Low to Mid (2-5x increase)
Stability in IPOPT	Medium (local minimum issues)	Medium (local minimum issues)
Error in estimates	~0-10% - depends on surrogates	~0-30% Depending on breadth of model and components Suffers from edge case errors

NAVVI

Reaktoro provides access to derivatives, enabling integrations into Pyomo models via GrayBox method

Reaktoro is a platform for simulation of chemical reactions:

- Access to large number of databases
 - PHREEQC
 - Thermofun
 - SUPCRT/SUPCRTBL
 - NASA
- Access to a number of activity models
 - Pitzer
 - Peng Robinson
 - Etc.

NAWI

• Estimates a large number of chemical, thermodynamic, and aqueous properties

Provides access to direct derivatives as a function of user inputs:

 Enables integration into Pyomo via Graybox modeling approach

 Available on WaterTAP-org GitHub: <u>https://github.com/watertap-org/reaktoro-pse</u>

Reaktoro-PSE API structure

ReaktoroBlock

NA

ReaktoroBlock is designed for handling apparent species

The apparent species structure removes the need to track exact species through out a flowsheet, reducing computational complexity.

Apparent species inputs with chemistry modifier System state Temperature

Reaktoro-PSE examples

- 1. Scaling tendencies
- 2. Precipitation of solids
- 3. Vapor pressure calculations
- 4. Enthalpy estimation for thermal processes
- 5. Combustion of fuel
- 6. Ion exchange calculations