

Enabling High Recovery with Flow Reversal and Feed Flushing

Zachary Binger¹, Alexander Dudchenko², Mingheng Li³

¹National Renewable Energy Laboratory, ²SLAC National Accelerator Laboratory, ³California State Polytechnic University, Pomona

Thursday, September 19, 2024

Chino Desalter I

The **Chino Desalter I** is part of the **Chino Desalter Project**, which was established to provide a reliable water supply and manage groundwater quality in the **Chino Basin**, located in Southern California.

Current Infrastructure

- 14 MGD
- 80% Recovery
- Feed TDS of 950 mg/L

Goals

NAWI

- Increase recovery from 80% to 90+%
- Minimize Brine Disposal Costs
 - Hard limit on brine disposal
 - Without increased recovery this also limits production
- Estimate retrofit cost and potential savings from adding 3rd RO stage

Brine Disposal Costs and the Case For High Recovery

Fiscal Year	Flow (MG)	BOD (1,000 lbs.)	TSS (1,000 lbs.)	Monthly Fixed Pipeline	Monthly Fixed Treatment
2017	\$858	\$307	\$429	\$5,639	\$11,433
2018	\$901	\$307	\$429	\$5,921	\$12,007
2019	2019 \$946		\$429	\$6,217	\$12,607
2020	2020 \$979		\$442	\$6,398	\$12,985
2021 Jan - Jun	21 Jan - Jun \$1,018		\$460	\$6,654	\$13,505
2021 Jul - Dec	\$979	\$316	\$442	\$6,398	\$12,985
2022 Current	\$1,018	\$329	\$460	\$6,654	\$13,505
2023 proposed	\$1,049	\$353	\$520	\$6,654	\$13,505
2024 planned	\$1,101	\$371	\$547	\$6,654	\$13,505
% Change (2017-2024)	28%	21%	28%	18%	18%

[1] "Inland Empire Brine Line - Santa Ana Watershed Project Authority." SAWPA, 8 May 2024, sawpa.gov/inland-empire-brine-line/.
[2] Inland Empire Brine Line Rate Resolution 2022-9, Santa Ana Watershed Project Authority, 2022

Scaling is a multi-step and time dependent phenomena

Induction Time: Time between the occurrences of supersaturation to the formation of stable nuclei of the precipitating salt

Function of saturation index

NAWI

$$\log t_{ind} = A + \frac{B}{T^3 S I^2}$$

Impact of scaling

- Reduced permeability and membrane life
- Enhanced by concentration polarization

Flow Reversal: A technique to prevent scale formation by periodically reversing the flow direction in reverse osmosis (RO) systems.

Flushing: Stop permeate production and flush with lower concentration water to rapidly reduce the concentration of the fluid in the system

- Resets the crystallization induction clock
- Mitigates scaling, potentially eliminating the need for antiscalants.
- Maintains high system recovery, even under high supersaturation conditions
- Continuous Operation: Unlike traditional cleaning processes, flow reversal minimally interrupts RO operations.

Expected Impact: Significantly enhances system performance, extending membrane life and improving recovery rates in RO desalination processes

3rd Stage Profile

90% recovery in brackish water desalination. Desalination, 576, 117348.

WaterTAP Models Can Be Quickly Fit to Experimental Data Using Built-in Tools

NAVVI

Experimental Outputs	Symbol	Units
Feed Flow Rate	Q_f	GPM
Permeate Flow Rate	Q_p	GPM
RO Feed Pressure	P_f	psi
RO1 Pressure Losses	ΔP_{RO1}	psi
RO2 Pressure Losses	ΔP_{RO2}	psi
Permeate Concentration	C_p	mg/L
Pump Work	W_p	kW

Unknown Parameters	Symbol	Units
Water permeability coefficient	Α	m ¹ s ⁻¹ Pa ¹
Salt permeability coefficient	В	m ¹ s ⁻¹
Darcy's friction factor coefficient	<i>C</i> ₁	
Darcy's friction factor exponent	n	
Sherwood coefficient	<i>C</i> ₂	
Pump Efficiency	ξ	%

10

Experimental Data and Parameter Estimation Results

Parameter	Symbol	Value	Units
Water permeability coefficient	А	8.80e-12	m ¹ s ⁻¹ Pa ¹
Salt permeability coefficient	В	8.00e-08	m ¹ s ⁻¹
Darcy's friction factor coefficient	<i>C</i> ₁	7.82	dimensionless
Darcy's friction factor exponent	n	0.354	dimensionless
Sherwood coefficient	<i>C</i> ₂	4.73	dimensionless
Pump Efficiency	ξ	65.1	%

Metric	R ²	MAPE (%)
Flow Rates ($Q_f + Q_p$)	0.99	0.29
Pump Pressure (P _f)	0.85	0.38
Pressure Losses (ΔP_{RO1} + ΔP_{RO2})	0.98	3.89
Permeate Concentration (C_p)	0.91	8.11
Pump Work (W_p)	0.99	0.38

Multiperiod Model Unlocks Optimization Across Operating Modes

NAVVI

Retrofit Increases Capital Cost But Unlocks Higher Recovery

	2-Stage Baseline (80%)	3-Stage FFRRO (<u>90%)</u>
Total Capital Cost	\$909,604	\$1,061,951
Total Operating Cost	\$457,492	\$359,695
- Brine Disposal Cost	\$245,787	\$109,876
Total Annualized Cost	\$548,452	\$460,874
LCOW	\$0.223	\$0.187

Assumptions:	
Flow Reversal Duty Cycle	95%
3 rd Stage Membrane Life	1 Yr.
Brine Disposal Cost	\$1500/MGallon

Disposal Costs Are A Primary Driver for Operation

	2000 -	13	7.8	2.7	-2.2	-6.9	-11	-15	-19	-23	-27	-30		- 20	
(IE	2000	12	0.0	2.2	1.6	6.1	10	14	10	22	25	20			%
ğ		13	0.Z	3.2	-1.0	-0.1	-10	-14	-10	-22	-20	-20		10	$\hat{\mathbf{O}}$
Ň	1800 -	14	8.7	3.8	-0.88	-5.3	-9.6	-14	-17	-21	-24	-27		- 10	Ľ
t (\$		14	9.2	4.4	-0.16	-4.5	-8.6	-12	-16	-19	-23	-25			gue
COS	1600 -	15	9.8	5.1	0.61	-3.6	-7.7	-11	-15	-18	-21	-24		- 0	Je ir
osal C		15	10	5.8	1.4	-2.7	-6.6	-10	-13	-17	-20	-22			
	1400 -	16	11	6.5	23	-1.7	-5.5	-9.0	-12	-15	-18	-21		1() O C
Jisp		16	12	7.3	3.2	-0.69	-4.3	-7.7	-11	-14	-17	-19			\leq
е	1200 -	17	12	8.1	4.2	0.42	-3.1	-6.3	-9.1	-12	-15	-17		20)\$/r
3rin		17	13	9.0	5.2	16	-1.7	-4.8	-7.4	-10	-13	-15			n ₃)
ш	1000 -	18	14	9.9	6.3	2.9	-0.31	-3.2	-5.7	-8.3	-11	-12		3(C
		80.0) 8	83.0) (86.0) (<u>89.0</u>) (92.0) (95.0)	0	
Water Recovery (%)															

Key Takeaway: As disposal costs increase it is critical to increase recovery.

• As disposal costs increase, the capital cost investment becomes less of a burden.

Assumptions: Flow Reversal									
Flow Reversal Duty Cycle	95%								
3 rd Stage Membrane Life	1 Yr.								

Increasing Recovery Offsets Retrofit Cost If Membrane Lifetime Improves

	2.0 -	9.9	5.2	0.61	-3.7	-7.9	-12	-15	-19	-22	-25	-27	- 60	
ars)	1.8 -	10	5.7	1.2	-3.2	-7.3	-11	-15	-18	-21	-24	-27	40	% (
yea	1.6 -	11	6.4	1.9	-2.5	-6.6	-11	-14	-17	-21	-24	-26	- 40	Cha
) er	1.4 -	12	7.3	2.7	-1.6	-5.7	-9.6	-13	-16	-20	-23	-25	00	nge
etin	1.2 -	13	8.5	3.9	-042	-4.5	-8.4	-12	-15	-18	-22	-24	- 20	Ш.
Lif	1 -	15	10	5.6	1.2	-2.9	-6.8	-10	-14	-17	-20	-22	0	LC
ane	0.8 -	17	13	8.1	3.7	-4	-4.3	-7.9	-11	-14	-18	-20	- 0	ΟW
nbr	0.6 -	22	17	12	7.9	3.7	-0.15	-3.8	-6.9	-10	-13	-16	- 20	\$
Mer	0.4 -	30	25	20	16	12	8.1	4.5	1.3	19	-5.2	-7.5	-20	Ξ _ω
	0.2 -	55	50	45	41	37	33	29	26	23	20	17	10	Ŭ
8d.0 83.0 86.0 89.0 92.0 95.0 Water Recovery (%)														

Key Takeaway: Flow reversal or feed flushing can see positive returns if they can increase membrane lifetime at higher recoveries.

Assumptions: Flow Reversal									
Flow Reversal Duty Cycle	95%								
Brine Disposal Cost	\$1500/MGallon								

Duty Cycle Has Minimal Impact on LCOW

Duty Cycle (%)												
		90	9'1	92	9'3	94	95	96	97	98	99	
	80 -	12	12	12	12	12	12	12	12	12	12	L _30
		7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.2	n)
Ma	83 -	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.6	20 (\$/n
ater		-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.8	2
Re	86 -	-5.9	-5.9	-5.9	-5.9	-5.9	-5.9	-5.9	-5.9	-5.9	-6.0	10 0
e C O		-9.8	-9.9	-9.9	-9.9	-9.9	-9.9	-9.9	-9.9	-10.0	-10.0	
ver	89 -	-14	-14	-14	-14	-14	-14	-14	-14	-14	-14	
کر (-17	-17	-17	-17	-17	-17	-17	-17	-17	-17	Bue
(%	92 -	-21	-21	-21	-21	-21	-21	-21	-21	-21	-21	
		-24	-24	-24	-24	-24	-24	-24	-24	-24	-24	%
	95 -	-27	-27	-27	-27	-27	-27	-27	-27	-27	-28	20
20												

Key Takeaway: The duty cycle for flow reversal doesn't impact system costs very much.

 Stage 3 recovers the last ~10% and is down ≤10% of the time. These losses can easy be made-up during the rest of the duty cycle.

Assumptions: Flow Reversal		
Brine Disposal Cost	\$1500/MGallon	
3 rd Stage Membrane Life	1 Yr.	

The Impact of Flow Reversal and Flushing is Minimal Compared to Recovery

Key Takeaway: The wasted flush volumes are expensive compared to flow reversal, but can be offset by increased recovery and may be more effective in resetting induction time.

Assumptions: Feed Flushing		
Brine Disposal Cost	\$1500/MGallon	
3 rd Stage Membrane Life	1 Yr.	

NAVVI

The Relationship Between Flow Reversal, Flushing, and Membrane Life Is Critical

Assumptions:	
Water Recovery	90%
Brine Disposal Cost	\$1500/MGallon

Conclusions

High Recovery: Implementing a 3rd RO stage process can increase recovery rates at Chino I beyond 90%, significantly reducing brine disposal costs.

Economic Viability: Retrofit costs are offset by reduced brine disposal costs.

Key Factor: The impact of flow reversal and flushing frequency on membrane life is critical in ensuring long-term process sustainability and estimating system performance.

Future Work: Reaktoro will be integrated to model the impact of flow reversal and feed flushing on membrane lifetime.

 Move beyond sensitivity analysis and perform system optimization

Thank You

