

Carbon Capture Simulation for Industry Impact

Objectives

- Present recent algorithmic and implementation advances of the **Pyomo Robust Optimization Solver (PyROS)**, a Python package for solving nonconvex problems under uncertainty through two-stage robust optimization
- Demonstrate utility of PyROS for large-scale process systems optimization through a case study on optimization of an amine-based CO₂ capture system under epistemic uncertainty

Robust Optimization with the PyROS Solver

Two-Stage Decision-Making Framework

Commit upon first-stage decisions (i.e., design)

Observe **uncertain** parameters (directly or via system response)

Adjust system with second-stage decisions (i.e., control)

Goal of Two-Stage Robust Optimization (RO)

GIVEN

- **Deterministic model** (NLP model)
- Degree-of-freedom partitioning into 1st-stage and 2nd-stage
- Quantification of uncertainty in form of uncertainty set • e.g., 95% confidence ellipsoid

DETERMINE

- System design that is guaranteed to remain feasible under all scenarios
- Accompanying control policy to perform any operating adjustments needed for system to achieve feasibility
- Optimality in light of a **combined** economic objective (CapEx+OpEx)

Recent Updates to the PyROS Solver

- Overhauled the preprocessing subroutine and subproblem formulations to make the solver substantially more efficient and reliable
- Updated the uncertainty set interfaces to allow for more careful tracking and initialization of auxiliary uncertain parameters
- Made the automated testing suite more comprehensive to establish stronger guarantees that PyROS works as intended
- Implemented minor documentation and bug fixes

References

[1] Isenberg, Natalie M., et al. "A generalized cutting-set approach for nonlinear robust optimization in process systems engineering." AIChE Journal 67.5 (2021): e17175.

[2] N.M. Isenberg, J. Sherman, J.D. Siirola, C.E. Gounaris, "PyROS: Nonlinear Robust Optimization in Pyomo," Forthcoming, 2024.

Acknowledgements

The authors graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy and Carbon Management, through the Carbon Capture Program and Simulation-based Engineering/Crosscutting Research Program. JS and CEG also graciously acknowledge funding from the Carbon Capture Simulation for Industry Impact (CCSI²) program.

Contact:

Jason A. F. Sherman, Carnegie Mellon University, jasherma@andrew.cmu.edu Chrysanthos E. Gounaris, Carnegie Mellon University, gounaris@cmu.edu

Lawrence Livermore National Laboratory

Mellon University