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Optimum Design and Operation of the CCS Unit

Techno-economic Optimization Framework

Project Objective
Determine the economically optimal process design and operating conditions of a monoethanolamine (MEA) solvent-based carbon dioxide (CO2) capture system

• Set the point source of CO2 emissions for a commercial-scale natural gas combined cycle (NGCC) power plant (690 MW) with flue gas containing ~4 vol% 
CO2

• Perform techno-economic analysis at high CO2 capture levels
• Study the effect of steam sources (NGCC steam cycle and natural gas auxiliary boiler) on the optimum performance and cost of the NGCC-carbon capture 

and storage (CCS) system
• Quantify process and model uncertainties for high CO2 capture in solvent-based systems

Implemented in FOQUS (Framework for Optimization, Quantification of Uncertainty, and Surrogates) [1]
Economic Model (Institute for Design of Advanced Energy 
Systems Framework)
Levelized cost of electricity (LCOE)
Cost of Avoided CO2 (COAC)
NGCC-CCS system [2], [3]
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Optimal LCOE and COAC with Incremental Avoided Cost

Quantifying Impacts of Uncertainty on High Capture Absorber Height and SRD
Thirteen parameters were considered in the thermodynamic and mass transfer models, selected based on Sobol analysis [4], [5].
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�𝑥𝑥 Unit Range

Absorber diameter meter 12–20

Absorber height meter 20–45

Lean CO2 loading mol CO2

mol MEA
0.1–0.25

Intercooler temperature °C 25–45

Intercooler flow fraction mass flow IC
mass flow lean solvent

1e-5–1

Lean solvent 
temperature °C 25–45

Rich solvent 
temperature (Lean/rich 

HEX exit)
°C 90–115

Stripper height meter 4–15

Stripper diameter meter 3–10

Stripper pressure kPa 170–230

Flue gas temperature °C 25–45

SE: MEA with steam extraction
AB: MEA with auxiliary boiler
O&M: Operation and maintenance
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SRD (MJ/kg CO2)

Probabilistically Required SRD for 99.5% Capture

Deterministic SRD: ~ 4.0 MJ/kg CO2

Maximum SRD (80% extraction at 
IP/LP crossover: ~ 4.33 MJ/kg CO2

Auxiliary Boiler 
Likely Required 

COAC i = LCOE i  − LCOE nocap
CO2 Emissions nocap
Plant Net Power nocap  − CO2 Emissions i

Plant Net Power i

    i ϵ CO2 Capture Level

COAC ~ 26% higher than Case SE

Case SE Case AB

Higher lean loading 
suboptimal for higher 
capture levels above 
99% (SE) & 97% (AB)

Specific reboiler duty 
(SRD) increases steeply 
above 98% capture 
(both cases)

Higher solvent recirculation 
suboptimal for higher capture 
levels above 99% (SE) & 97% (AB)

Absorber packed height 
steeply increases above 
98% capture (both cases)

Probabilistically Required Absorber Height 
to Reach 99.5% Capture (SE Case)
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