Validation Framework for Post-Combustion Carbon Capture CFD Simulations

Grigorios Panagakos^{1,2,3}, Yash Girish Shah^{1,2}, Amiee Jackson⁴, Henry Yuchi⁵, Abby Nachtsheim⁵, Samuel S. Sasser⁴, Jonathan Willocks⁶, Gyoung Gug Jang⁴, Costas Tsouris⁴, Charles E. A. Finney⁶ ¹National Energy Technology Laboratory, Pittsburgh, PA; ²NETL Support Contractor, Pittsburgh, PA; ³Carnegie Mellon University, Pittsburgh, PA; ⁴Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, TN; ⁵Los Alamos National Laboratory, Santa Fe, NM; ⁶Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN.

Motivation: Process Intensification of Packed Columns

- Temperature rise in the column leads to reduced reactivity and CO₂ absorption.
- Packing geometries with embedded cooling channels can enhance column performance and reduce operational and capital costs.

Longer-term Objective:

- Design structured packing to optimize carbon capture rate for given solvent and operating conditions.
- Develop a computational framework to map the geometrical features of the structured packing to column performance metrics.
- Create a computational tool for process optimization that can incorporate the effects of packing design and embedded cooling through reduced order models acquired from Machine Learning (ML) algorithms.

ORNL Packing Prototype Performance (PPP) Column

References

¹ Miramontes, Jiang, Love, Lai, Sun, Tsouris "Process intensification of CO₂ absorption using a 3D printed intensified packing device." AIChE J 2020; 66:e16285.

- ² Miramontes, Love, Lai, Sun, Tsouris "Additively Manufactured Packed Bed Device for Process Intensification of CO₂ Absorption and Other Chemical Processes." Chemical Engineering Journal, 2020; 388, p. 124092.
- ³ Plaza, J.M., Van Wagener, D. and Rochelle, G.T., "Modeling CO₂ capture with aqueous monoethanolamine." Energy Procedia, 2010; 1(1), pp.1171-1178.

Contact:

Yash Girish Shah, NETL Support Contractor, yashgirish.shah@netl.doe.gov Grigorios Panagakos, Carnegie Mellon University, gpanagak@andrew.cmu.edu

NATIONAL

ENERGY TECHNOLOGY LABORATORY

.....

BERKELEY LAB

Carnegie Mellon

OAK RIDGE West Virginia University West Virginia University TEXAS