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Modeling of NETL DAC PIM Sorbent

Ambient Conditions Performance AnalysisBackground Vacuum-Assisted Temperature Swing Adsorption
• Direct air capture (DAC) may be significantly 

impacted by climate and shifting ambient conditions
• Understanding the economic impacts of shifting 

ambient conditions is critical in determining optimal 
site locations and control strategies to minimize 
negative impacts

• This work demonstrates tool development that can be 
implemented with first-principles models to better 
understand these impacts 

Conclusions
• Modeling tools available in IDAES and CCSI2 open-source software were used 

to model PIM sorbent technology for DAC applications
• The FOQUS tool enables the propagation of conditions through process models
• Critical analysis is needed to determine the robustness of the process to 

ambient conditions and to identify needed control strategies to transition from 
one condition to another
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Modeled Fixed-Bed Design with Low Pressure Drop:
• Assumption of a flat bed2 to mimic a differential segment of the 

plates containing the solid sorbent in the Climeworks contactor
• First-principles vacuum-assisted temperature swing adsorption 

model developed in Aspen Adsorption

Cycle configuration of Aspen model 
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Effect of Humidity on CO2 Adsorption:

Assumption: The limited 
availability of data was 
addressed by combining 
the sorbent PIM-1-AO-TAEA 
CO2 isotherm with available 
enhancement factor 
models for other materials 
(Lewatit VP OC 10652)
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CO2 Isotherm Model: 
Modified Toth1 𝑞𝑞𝐶𝐶𝐶𝐶2 =
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H2O Isotherm Model: 
GAB Model2 𝑞𝑞𝐻𝐻2𝐶𝐶

∗ = 𝑞𝑞𝑐𝑐
𝐾𝐾𝑎𝑎𝑎𝑎𝑝𝑝𝐶𝐶𝐺𝐺𝑥𝑥𝑅𝑅𝐻𝐻

1 − 𝐾𝐾𝑎𝑎𝑎𝑎𝑝𝑝𝑥𝑥𝑅𝑅𝐻𝐻 1 + 𝐶𝐶𝐺𝐺 − 1 𝐾𝐾𝑎𝑎𝑎𝑎𝑝𝑝𝑥𝑥𝑅𝑅𝐻𝐻

Techno-economic Optimization

Derivative-Free Optimization Using CCSI2 Toolset (FOQUS)
𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

 𝑓𝑓 𝑥𝑥 Cost of capture ($/tonne)

𝑠𝑠. 𝑡𝑡.

𝑥𝑥𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑈𝑈 Decision variable bounds

ℎ 𝑥𝑥 = 0 Modeling eqs. (mass balances, energy balances, etc.)

𝑔𝑔 𝑥𝑥 ≤ 0 Process constraints

IDAES Costing Framework
• Uses NETL Quality Guidelines for Energy 

System Studies methods and implemented 
as IDAES library3

• Costing information obtained from NETL 
DAC Sorbent Report4

Metric Optimized 
Value

Recovery 0.73

CO2 product purity
(water-free basis)* 0.95

Energy requirement 
[MJ/kg CO2]

14.71

Productivity
[kg CO2/h/m3] 15.67

Cost of capture
[$/tonne]* 268.2

Results
Loading Profile for Optimized Case

Joint Probability DistributionsTime Series Data5
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Statistical 
Analysis

Propagation 
through 

Process Model 
Using FOQUS

Analysis of Candidate Site (Odessa, TX)

• Cost of capture increases at higher temperatures and specific humidities
• Cost of capture is most sensitive to specific humidities

*Costs are preliminary, DO NOT CITE

Ambient Conditions: 25 °C, 50% relative 
humidity, 1 atm
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