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Rapid deployment of a process system across decentralized sites with 
different geographical, environmental and operating requirements.

Modular

… …… … ……

Variant 1 Variant 2

Process Family Design enables reduced manufacturing costs, 
shared engineering effort and design flexibility.

Process Family Design[2]

Common Units

 Reduced manufacturing costs. 
 Decomposition approach gives improved performance.

o Scalability
o Smaller optimality gaps
o Increased annual cost savings

 Avoids large number of upfront simulations.

 Investigate extensions of algorithm to decarbonization case studies.
 Application to more complex rigorous equation-oriented models.
 Incorporate quadratic approximations of nonlinear system models.
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Future Work

Conventional
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Variant 1 Variant 2

Decomposition Approach[3]

Water Desalination

1) Evaporator area
2) Compressor design flow

𝑐𝑐 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

𝑐𝑐 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

𝐶𝐶 = [𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄]

Full-Space Approach
Decisions within Disjunction

1)bwhich design 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐 for common modules 
c ∈ 𝐶𝐶 is assigned to each variant 𝑣𝑣 ∈ 𝑉𝑉?

2)Vwhat are the designs 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐 for common 
modules c ∈ 𝐶𝐶 on the platform?

𝑌𝑌𝑣𝑣,𝑐𝑐,𝑙𝑙

𝐝̂𝐝𝑐𝑐,𝑙𝑙

A
B

C D
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Process variants assembled from units in the platform

Process Family

Platform

dEVAP,1 dEVAP,2 dCOMP,1 dCOMP,2

Common unit modules

Uniqueness

Commonality

Optimal balance between: 

Simultaneous design of a family of variants with different 
design requirements, while optimizing a platform of common 
shared components and their distribution across the family.

s.t.

Y𝑣𝑣,𝑐𝑐,𝑙𝑙
𝐝𝐝𝑣𝑣,𝑐𝑐 = 𝐝̂𝐝𝑐𝑐,𝑙𝑙

⋁
𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐

∀ 𝑣𝑣 ∈ 𝑉𝑉, 𝑐𝑐 ∈ 𝐶𝐶

𝐝̂𝐝𝑐𝑐LB ≤ 𝐝̂𝐝𝑐𝑐,𝑙𝑙 ≤ 𝐝̂𝐝𝑐𝑐UB ∀ 𝑐𝑐 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐

Y𝑣𝑣,𝑐𝑐,𝑙𝑙 ∈ {True, False} ∀ 𝑣𝑣 ∈ 𝑉𝑉, 𝑐𝑐 ∈ 𝐶𝐶 , 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐

∀ 𝑣𝑣 ∈ 𝑉𝑉
𝐢𝐢𝑣𝑣 = 𝑓𝑓𝑣𝑣𝑖𝑖(𝐫𝐫𝑣𝑣 ,𝐝𝐝𝑣𝑣,1, … ,𝐝𝐝𝑣𝑣,𝑚𝑚,𝐨𝐨𝑣𝑣)
𝑝𝑝𝑣𝑣 = 𝑓𝑓𝑣𝑣

𝑝𝑝(𝐫𝐫𝑣𝑣 ,𝐝𝐝𝑣𝑣,1, … ,𝐝𝐝𝑣𝑣,𝑚𝑚,𝐨𝐨𝑣𝑣)
∀ 𝑣𝑣 ∈ 𝑉𝑉

0 = ℎ 𝐫𝐫𝑣𝑣 ,𝐝𝐝𝑣𝑣,1, … ,𝐝𝐝𝑣𝑣,𝑚𝑚,𝐨𝐨𝑣𝑣 ∀ 𝑣𝑣 ∈ 𝑉𝑉

𝐨𝐨𝑣𝑣LB ≤ 𝐨𝐨𝑣𝑣 ≤ 𝐨𝐨𝑣𝑣UB

𝐢𝐢𝑣𝑣LB ≤ 𝐢𝐢𝑣𝑣 ≤ 𝐢𝐢𝑣𝑣UB
∀ 𝑣𝑣 ∈ 𝑉𝑉
∀ 𝑣𝑣 ∈ 𝑉𝑉

𝐝̂𝐝𝑐𝑐,𝑙𝑙−1 ≤ 𝐝̂𝐝𝑐𝑐,𝑙𝑙 ∀ 𝑐𝑐 ∈ 𝐶𝐶, 𝑙𝑙 ∈ 𝐿𝐿𝑐𝑐

min.�
𝑣𝑣∈𝑉𝑉

𝒘𝒘𝑣𝑣𝒑𝒑𝑣𝑣

Model 
equations

Cost

Performance

Process physics

Distribution of common 
modules across variants

Ordering platform 
designs by size

Design and 
operating limits

Minimize weighted sum of 
cost of every variant in family

Salt Water

Water

Brine

Variant design requirements

1) Salt water flow rate
2) Salt water concentration

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

Challenge (1.5) :

Scalability of problem with increasing problem size

Platform Shared among family 
of variants

Variant 
1 . . .

Sub-PFD 1

Family of variants

. . . Sub-PFD n
Smaller families

Variant 
2

Variant 
3

Variant 
n

Sub-PFD 2

Platform 1 Platform 2 Platform n . . . with 
their own platforms

Platform

dEVAP,1 dEVAP,2

d EV
AP

,2

dEVAP,1
(20, 20) (400, 20)

(400, 400)(20, 400)1

2 3

54

6 7

20 ≤ dEVAP,1≤ 400
20 ≤ dEVAP,2≤ 210

20 ≤ dEVAP,1≤ 400
210 ≤ dEVAP,2≤ 400

210 ≤ dEVAP,1≤ 400
210 ≤ dEVAP,2≤ 400

20 ≤ dEVAP,1≤ 210
210 ≤ dEVAP,2≤ 400

20 ≤ dEVAP,1≤ 210
305 ≤ dEVAP,2≤ 400

20 ≤ dEVAP,1≤ 210
210 ≤ dEVAP,2≤ 305

20 ≤ dEVAP,1≤ 400
20 ≤ dEVAP,2≤ 400

dEVAP,2

dEVAP,1

dEVAP,2

First stage variables: dEVAP,1, dEVAP,2 

• For the largest case of 18 variants, the decomposition approach 
achieves a 10% optimality gap, while the full-space approach results 
in an optimality gap > 50%.

• For a solution time of 1 hour, up to 5%  improvement in objective 
compared to the discretization approach, and up to 8% improvement 
in objective compared to the full-space approach.

+ 85 constraints 

+ 54 continuous variables 

+ 4 binary variables
Solved using BARON 
(Off-the-shelf global 
optimization solver)

Need to improve scalability! 

Block angular structure like a two-stage stochastic program.

non-anticipativity constraint

Lower bound: Relax non-anticipativity constraint 

Upper bound: Best locally feasible solution

Solved the decomposed problem using a reduced space branch and bound 
(B&B) algorithm for global optimization of nonlinear stochastic programs. 

time for 76 variants 
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