

Ali Asger^a, Georgia Stinchfield^a, Miguel Zamarripa^{b,c}, Carl D. Laird^a ^a Carnegie Mellon University, Pittsburgh, PA 15213; ^b National Energy and Technology Laboratory (NETL), Pittsburgh, PA 15236; ^c NETL Support Contractor, Pittsburgh, PA 15236

	$\min \sum_{v \in V} w_v p_v$		(1.1)	cost of every variant in
	s.t. $p_{v} = f_{v}^{p}(\mathbf{r}_{v}, \mathbf{d}_{v,1}, \dots, \mathbf{d}_{v,m}, \mathbf{o}_{v})$	$\forall v \in V$	(1.2)	Cost
l	$\mathbf{i}_{v} = f_{v}^{i}(\mathbf{r}_{v}, \mathbf{d}_{v,1}, \dots, \mathbf{d}_{v,m}, \mathbf{o}_{v})$	$\forall v \in V$	(1.3)	Performance equ
	$0 = h(\mathbf{r}_{v}, \mathbf{d}_{v,1}, \dots, \mathbf{d}_{v,m}, \mathbf{o}_{v})$	$\forall v \in V$	(1.4)	Process physics
	$\underbrace{V}_{l \in L_{c}} \begin{bmatrix} Y_{v,c,l} \\ \mathbf{d}_{v,c} = \hat{\mathbf{d}}_{c,l} \end{bmatrix}$	$\forall v \in V, c \in C$	(1.5) -	Distribution of com modules across vari
	$\hat{\mathbf{d}}_{c,l-1} \leq \hat{\mathbf{d}}_{c,l}$	$\forall \ c \in C, l \in L_c$	(1.6) -	Ordering platform designs by size
l	$\hat{\mathbf{d}}_{c}^{\mathrm{LB}} \leq \hat{\mathbf{d}}_{c,l} \leq \hat{\mathbf{d}}_{c}^{\mathrm{UB}}$	$\forall c \in C, l \in L_c$	(1.7)	
l	$\mathbf{o}_{v}^{\mathrm{LB}} \leq \mathbf{o}_{v} \leq \mathbf{o}_{v}^{\mathrm{UB}}$	$\forall v \in V$	(1.8)	Design and
l	$\mathbf{i}_{v}^{\mathrm{LB}} \leq \mathbf{i}_{v} \leq \mathbf{i}_{v}^{\mathrm{UB}}$	$\forall v \in V$	(1.9)	
	$Y_{\nu,c,l} \in \{\text{True, False}\}$	$\forall v \in V, c \in C,$	$l \in L_c$	(1.10)

Efficient Global Optimization for Design of Chemical Process Families

Laboratories

Carnegie Mellon VestVirginia University. UNIVERSITY OF

<u>Georgia</u>

Tech

