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Bi-directional feedback across scales 
de-risks technology development and 

scale-up.1

Optimizing Membrane 
Modules

Process Design and 
Optimization

Supply Chain Optimization
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Increasing Experimental 
Efficiency

Evolving supply chains 
necessitate revolutionizing 
critical mineral processing.1

Demand for 
critical minerals 
is expected to 

continue rising, 
and only 5% of 

lithium-ion 
batteries are 

recycled 
worldwide.2Lithium concentration in ore and brine as a function of 

time, where the green, grey, and blue bands show 
lithium concentration ranges in electric vehicle battery 
packs, oil field brine, and seawater, respectively. Data 
point colors correspond to geographical locations.1

Membranes can offer 
environmentally responsible 

processing routes.1
Conventional technology 

requires significant resources.

Machine Learning 
Accelerating Material Design

The large design space of 
membranes9 is efficiently explored 
with machine learning techniques 
such as Bayesian optimization.10
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Computational fluid 
dynamics optimizes the 

transport and flow profiles 
within membrane devices.8

Stochastic programming 
incorporates uncertainty into 

optimization with economic and 
environmental objectives.3,4

Superstructure optimization enables rapid design of 
customizable membrane cascades, simultaneously 

evaluating tradeoffs in ion recovery.5
Pareto Tradeoffs An Optimal DesignSuperstructure
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Process systems engineering 
automation techniques push 

towards self-driving laboratories.6,7

5x faster 
information gain6
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