

Alejandro Garciadiego^{a,} Andrew Lee^a, Jinliang Ma^a, Lingyan Deng^a, Marcus Holly^a, Arkoprabho Dasgupta^b, Debangsu Bhattacharyya^b, Soraya Rawlings^c, Bethany Nicholson^c, John Siirola^c, Molly Dougher^d, Alexander W. Dowling^d ^a NETL Support Contractor, ^b West Virginia University, ^c Sandia National Laboratories, ^d University of Notre Dame

Critical Minerals

- The global effort to curb carbon emissions is accelerating demand for clean energy technologies and critical minerals they rely on
- Provide essential and specialized properties while having no easy substitutes • Are assigned as critical by the Secretary of the Interior
- The estimated value of rare-earth compounds and metals imported by the United States in 2022 was \$200 million^[2]

MEDIUM TERM 2025-2035

SHORT TERM 2020-2025

Short and medium-term criticality matrix^[1]

Leveraged Existing PSE Infrastructure and Tools

Built of Pyomo, IDAES and WaterTAP:

- Compatible with other IDAES libraries
- Existing unit models
- Electrodialysis
- Ion Exchange
- Nanofiltration
- Reverse Osmosis

Modeling tools

- Surrogate models and ML:
- PySMO
- OMLT
- ALAMO
- Design of experiments: • Pyomo.DoE
- Dynamic modeling: • Pyomo.DAE
- Parameter estimation:
- parmest

References

[1] Bauer D. J., Ruby T. Nguyen R. T., smith B. J., (2023), Critical Materials Assessment, U.S. Department of Energy [2] U.S. Geological Survey, (2023), Mineral Commodity Summaries

[3] Honaker, R. Q., Zhang, W., Werner, J., Noble, A., Luttrell, G. H., and Yoon, R. H. (2019) Enhancement of a Process Flowsheet for Recovering and Concentrating Critical Materials from Bituminous Coal Sources. United States: N. p. [4] Wamble, N.P., Eugene, E.A., Phillip, W.A., Dowling, A.W., 'Optimal Diafiltration Membrane Cascades Enable Green Recycling of Spent Lithium-Ion Batteries', ACS Sustainable Chem. Eng. 2022, 10, 12207–12225

PrOMMis Model Library

