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are promising low-energy, aqueous Manufacturing variability in membrane sieving may reduce Optimization of a costing objective can determine optimal
processes for critical mineral recovery. process performance. Robust designs can satisfy recovery diafiltrate flow rate and yield cost effective designs.
(Interchangeable Li/Co Objectives) Example Membrane Stage [1] requirements under these conditions.
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Insights:
» Increasing membrane area helps to proactively maintain lithium recovery
» In the worst-case scenario, membrane tube modules right before product
Mixing streams have high cobalt sieving.
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Insights:

Pyomo Robust Optimization Solver (PyROS) » A more flexible process can sustain satistactory process performance References
under conditions where static designs fail.

can obtain robust optimal solutions that are
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