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Introduction

▶ Explicitly incorporating effects of chemical phenomena such as mineral
scaling and pretreatment in water treatment system design is critical.

▶ Incorporation of detailed chemistry into process-scale water treatment
models historically hindered by complexity of chemistry phenomena → our
surrogates-based modeling framework makes this possible.

▶ Research Gap: Abundance of qualitative assessments and experimental
studies on chemical pretreatment and scaling; very little on assessing the
technoeconomic implications of chemical pretreatment alternatives within
the context of end-to-end water treatment train optimization.

▶ Goal: Investigate impact of different pH control alternatives during
pretreatment on the cost and operation of high-recovery desalination trains.

▶ Why: pH Control in reverse osmosis (RO) treatment trains critical to
mineral-scale formation & membrane longevity.

Desalination Treatment Train

Proposed high-recovery treatment train: High-pressure reverse osmosis
(HPRO) technology with chemical pretreatment (Figure 1).

High-pressure reverse osmosis (HPRO)
▶ Innovation: Membranes for higher operating pressures (> 200 bar) than

currently possible with conventional reverse osmosis (≈ 85 bar).
▷ Higher recoveries and efficiencies (with pretreatment)
▷ Lower costs than other high-recovery alternatives

Chemical Pretreatment
▶ Softening: soda ash (Na2CO3) addition to remove calcium ions as CaCO3.
▶ Acidification: Acid addition for pH control.

▷ Three commonly-used alternatives evaluated: CO2, HCl, H2SO4

Figure 1: Schematic of the high-recovery treatment train showing surrogate insertion points.
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System Modeling & Optimization Formulation

Given Feedwater (FW),

min
d

LCOW =
CRF × capital cost + annual operating cost, $/yr

Treated water volume, m3/yr

▶ Pretreatment
▷ soda ash dose
▷ Acid dose

▶ RO parameters
▷ pressure
▷ recovery
▷ membrane area

s.t.

▶ HPRO process models
▶ Operational constraints
▶ Pretreatment constraints
▶ Mineral scaling constraints

(Scaling Tendency, ST ≤ 1)

Equalities

Inequalities

Hybrid Modeling Approach

▶ First principles (mechanistic) models for desalination train components
(RO, ERD, Pumps) from WaterTAP.

▶ Surrogates for pretreatment & mineral scaling (RBF Models)

Chemistry data generated with OLI; surrogates trained with PySMO

▷ Softening: CaCO3 concentration, pH = f (Na2CO3 dose)
▷ Acidification: pH = g (Na2CO3 dose, Acid dose)
▷ Mineral scaling:
▶ ST = h (Na2CO3 dose, Acid dose, RO Pressure, RO recovery)
▶ Scalants: Calcite (CaCO3), Gypsum(CaSO4.2H2O), Anhydrite(CaSO4)

Variable Range

Brackish Seawater

Na2CO3, mg/L 0-750 0-1200
RO Pressure, bar 10-110 50-300
RO Recovery, % 50-90 50-87
CO2, mg/L 0-300 0-50
HCl, mg/L 0-150 0-50
H2SO4, mg/L 0-150 0-50

Metrics (R2, MaxAE)

Brackish Seawater

Softening pH 1.00, 0.03 1.00, 0.02
Softening CaCO3; mg/L 1.00, 7.59 1.00, 5.07
Acidification pH (CO2) 0.99, 0.01 0.99, 0.05
Acidification pH (H2SO4) 0.99, 0.01 0.99, 0.04
Acidification pH (HCl) 0.99, 0.01 0.99, 0.03
Min. ST classification
accuracy (%)

>99.2 >99.2

Integrate detailed chemistry
into treatment train optimization
with surrogatemodels

Approach

Choice of acid largely depends on
feedwater composition and the
primary scalants of concern

Key Result

Results: Process Economics

Figure 2: Cost profiles for (A) brackish (B) seawater with different pH control acid choices.

▶ CO2 most expensive choice, HCl/H2SO4 similar.

Results: Process Operation

(a) Na2CO3 concentration profile - Brackish (b) pH profiles post-acidification - Brackish

(c) Optimal acid doses (d) Onsite acid storage - 10 days operation

Figure 3: Operational characteristics of HPRO system with different pH control options.

▶ Softening for gypsum scaling; pH adjustment for controlling calcite scaling.
▶ H2SO4 requires more softening than CO2/HCl, favors gypsum scaling.
▶ CO2 requires the highest concentration, needs lower pH for desalination.

▷ CO2 increases carbonate ion concentration, favoring calcite scaling.
▶ H2SO4 requires the lowest volume for onsite storage; CO2 safest choice.
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