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Equations of State
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Insights to Modeling with Helmholtz Energy
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ÅHelmholtz energy explicit equations of state are fit to and 

accurately represent multiple thermodynamic properties
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Helmholtz Energy EOS for Pure Components
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Helmholtz free energy can be related to thermodynamic properties by partial 

derivatives of density and temperature
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†ȟ‏‌ ‌ †ȟ‏ ‌ †ȟ‏

where ‏ ”Ⱦ” is the reduced density and † ὝȾὝis the inverse reduced 

temperature

ResidualIdeal



Multicomponent Mixtures
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ȟ†ȟӶὼ‏‌ ‌ ȟ†ȟӶὼ‏ ‌ ȟ†ȟӶὼ‏ Ў‌ ȟ†ȟӶὼ‏

where ‏ ”Ⱦ” Ӷὼ is the reduced density of the mixture, † Ὕ ӶὼȾὝis the 

inverse reduced temperature of the mixture, and Ӷὼis the vector of molar 

compositions
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ÅIdeal mixing behavior

‌ ”ȟὝȟӶὼ ὼ ‌ ”ȟὝ ÌÎὼ

ÅResidual mixing behavior

‌ ȟ†ȟӶὼ‏ ὼ‌ †ȟ‏

ÅDeparture mixing behavior

Ў‌ ȟ†ȟӶὼ‏ ὼὼὊ‌ ȟ†ȟӶὼ‏

Mixing behavior
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Helmholtz Mixture Formulations
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Å The current large mixture models are

ïGERG focusing on natural gases (Kuntz and Wagner, 2012)

ïEOS-CG focusing on combustion gases and combustion gas-like mixtures (Gernert and 

Span, 2016)

ïBoth build on the reference equations made prior 
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Best Subset Selection
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We propose a possible model

‌ †ȟ‏ †‏‍ ‏ÅØÐ†‏‍

ResidualIdeal Departure

where the temperature exponents are positive and density exponents are positive 

integers
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Mixture Model Regression
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ÅGiven

ïMeasurements of the predictors (‏,†, Ӷὼ)
ïMeasurements of the thermophysical properties (Z, Cp, é)

ÅSolve MINLP

Minimize fitting error

Calculate the thermophysical properties in terms of 

predictor values and the selected basis functions

Enforce physical constraints, such as 

compressibility curvature and magnitude

Binary variables to select best subset of basis 

functions

s.t.



HELMET Code Example
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Import python package
import helmet
import helmet.Helmetas Helmet



HELMET Code Example
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Pass molecule specific data and 

initialize settings

Import python package
import helmet
import helmet.Helmetas Helmet

# (critT, critP, critD, M, triple, acentric) = Fluids[molecule]
Fluids = {Ψ¢h[Ω: (591.75, 4.126, 3.169, 92.13, 178, 0.2657)}

Helmet.initialize(molecule=Ψ¢h[Ω,
fluid_data =  Fluids[Ψ¢h[Ω],
props = [Ψt±¢Ω,Ψ/tΩ,Ψ{b5Ω])

Molecule of interest

Critical values, molar 

density, acentric factor, 

and triple point

Properties to be regressed



HELMET Code Example

1212

Prepare ancillary equations with ALAMO

Pass molecule specific data and 

initialize settings

Import python package
import helmet
import helmet.Helmetas Helmet

# (critT, critP, critD, M, triple, acentric) = Fluids[molecule]
Fluids = {Ψ¢h[Ω: (591.75, 4.126, 3.169, 92.13, 178, 0.2657)}

Helmet.initialize(molecule=Ψ¢h[Ω,
fluid_data =  Fluids[Ψ¢h[Ω],
props = [Ψt±¢Ω,Ψ/tΩ,Ψ{b5Ω])

Helmet. prepareAncillaryEquations()



HELMET Code Example
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Plot property data

Prepare ancillary equations with ALAMO

Pass molecule specific data and 

initialize settings

Import python package
import helmet
import helmet.Helmetas Helmet

# (critT, critP, critD, M, triple, acentric) = Fluids[molecule]
Fluids = {Ψ¢h[Ω: (591.75, 4.126, 3.169, 92.13, 178, 0.2657)}

Helmet.initialize(molecule=Ψ¢h[Ω,
fluid_data =  Fluids[Ψ¢h[Ω],
props = [Ψt±¢Ω,Ψ/tΩ,Ψ{b5Ω])

Helmet. prepareAncillaryEquations()

Helmet. viewPropertyData()



HELMET Code Example
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Setup the MINLP regression

Plot property data

Prepare ancillary equations with ALAMO

Pass molecule specific data and 

initialize settings

Import python package
import helmet
import helmet.Helmetas Helmet

# (critT, critP, critD, M, triple, acentric) = Fluids[molecule]
Fluids = {Ψ¢h[Ω: (591.75, 4.126, 3.169, 92.13, 178, 0.2657)}

Helmet.initialize(molecule=Ψ¢h[Ω,
fluid_data =  Fluids[Ψ¢h[Ω],
props = [Ψt±¢Ω,Ψ/tΩ,Ψ{b5Ω])

Helmet. prepareAncillaryEquations()

Helmet. viewPropertyData()

Helmet. setupRegression(numTerms= 12, gams=True)

Key arguments for 

controlling the regression



HELMET Code Example
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View results including parity plots 

and extrapolated behavior
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Setup the MINLP regression

Plot property data

Prepare ancillary equations with ALAMO

Pass molecule specific data and 

initialize settings

Import python package
import helmet
import helmet.Helmetas Helmet

# (critT, critP, critD, M, triple, acentric) = Fluids[molecule]
Fluids = {Ψ¢h[Ω: (591.75, 4.126, 3.169, 92.13, 178, 0.2657)}

Helmet.initialize(molecule=Ψ¢h[Ω,
fluid_data =  Fluids[Ψ¢h[Ω],
props = [Ψt±¢Ω,Ψ/tΩ,Ψ{b5Ω])

Helmet. prepareAncillaryEquations()

Helmet. viewPropertyData()

Helmet. setupRegression(numTerms= 12, gams=True)

Helmet. viewResults(lstFile= ΨTolRegression.lstΩ)



Case study: H2O + CO2
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ÅWe regressed a departure equation for the mixture of CO2 and H2O with a restriction 

of 8 terms to match the number of terms in the departure term of EOS-CG
†ȟ‏‌ ‌ †ȟ‏ ‌ †ȟ‏ Ў‌ †ȟ‏

(/equation by Wagner and Pruss (2002)

Å56 term equation

ÅValid from 240 K to 1273 

K and up to 1000 MPa

#/ equation by Span and Wagner (1996)

Å42 term equation

ÅValid from 215 K to 

1100 K up to 800 MPa



Mixture Compressibility
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Mixture Isobaric Heat Capacity
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Regression to PVT and CP
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#/ -(/PVT fit #/ -(/heat capacity fit
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Under estimated 
compressibility
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compressibility

Under estimated Cp
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Work Plan
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2019

Preprocessing of 
feature selection

Pure component 
models

Mixture models
Uncertainty 

quantification

Future work2018

Incorporating 

GPU work by 

Ben Sauk

Future work



ÅHELMET implements nonlinear ALAMO methodology for thermophysical

properties

ÅHeuristics and GPU algorithms to expedite the MINLP problem solution

ÅAvailable from idaes.org 

Conclusions
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