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• Post-combustion carbon capture MEA-CO2 system, downstream of power plant

• Key units in flowsheet model
– Absorber and regenerator columns

– Heat exchangers

– Reboiler and condenser

• Column models (state equations):
– Vapor/liquid phase mole balances 

– Vapor/liquid phase energy balances 

– Heat/mass transfer rate equations

– Phase equilibrium relations

– Solvent chemistry equations

– Mass transfer coefficient equations

– Heat transfer coefficient equation

– Kinetic equations 

– Diffusivity equations

IDAES Post-Combustion Carbon Capture Model (PCC)
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Two-film V-L interface

Bhattacharyya, D. and Miller, D.C., 2017. Post-combustion CO2 capture technologies—a review of processes for solvent-based and sorbent-

based CO2 capture. Current Opinion in Chemical Engineering, 17, pp.78-92.

IDAES PCC flowsheetRepresentative process model:

Highly complex with lots of empirical (and 

hence, uncertain) property parameters 



IDAES Post-Combustion Carbon Capture Model (PCC)
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Two-film V-L interface

IDAES PCC flowsheet

• Cast flowsheet as an optimization problem

• Choices of objective:

1. None (simulation)

2. Performance metric

3. Economic objective

– CAPEX (annualized)
• Equipment 

– packed columns

– heat exchangers

– OPEX
• Utilities (steam, cooling water)

• Solvent

• Electricity (pumps) – not considered

• Performance requirements:

–  90% total percent CO2 captured from 
flue gas stream

Bhattacharyya, D. and Miller, D.C., 2017. Post-combustion CO2 capture technologies—a review of processes for solvent-based and sorbent-

based CO2 capture. Current Opinion in Chemical Engineering, 17, pp.78-92.



• Solution of economic optimization at nominal parameter values

• Solved with IPOPT via Pyomo within IDAES framework

• Highly nonlinear and non-convex model

• 12,000 variables and constraints 

– (90-point column discretization)

Deterministic Optimization
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• Data in the MEA-CO2 flowsheet model are inherently uncertain

– Operational uncertainty: fluctuations in feed makeup 

– Economic uncertainty: market prices

– Parametric uncertainty: mass transfer, heat transfer, chemical reactions

• PCC column sub-models contain parameters within quantified uncertainties[1],[2]

– Mass transfer equation parameters (𝐶𝐿, 𝐴1)[1]

– Liquid phase viscosity parameters (𝑓, 𝑔)[2]

– Reaction equilibrium constant parameters (𝑏1, 𝑏2)

• Previously developed tools (CCSI/FOQUS[3]) for uncertainty quantification and 

IDAES parameter estimation methods allow users to quantify effects of 

uncertainty on process models

Origins of Uncertainty
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[1] Chinen, A. et. al., 2018. Development of a Rigorous Modeling Framework for Solvent-Based CO2 Capture. 1. Hydraulic and Mass Transfer Models and Their Uncertainty Quantification. Industrial & 

Engineering Chemistry Research, 57(31), pp.10448-10463.

[2] Morgan, J.C., et. al., 2015. Uncertainty quantification of property models: Methodology and its application to CO2‐loaded aqueous MEA solutions. AIChE Journal, 61(6), pp.1822-1839.

[3] Miller, D.C., Agarwal, D., Bhattacharyya, D., Boverhof, J., Chen, Y., Eslick, J., Leek, J., Ma, J., Mahapatra, P., Ng, B., Sahinidis, N.V., Tong, C., Zitney, S.E., 2017. Innovative computational tools and 

models for the design, optimization and control of carbon capture processes, in: Papadopoulos, A.I., Seferlis, P. (Eds.), Process Systems and Materials for CO2 Capture: Modelling, Design, Control and 

Integration. John Wiley & Sons Ltd, Chichester, UK, pp. 311–342.



Robustness of Deterministic Solution
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• Uncertainty quantification studies yield 95% confidence intervals and covariances for 

uncertain parameter correlations

• Allows us to define ellipsoidal uncertainty sets for the pairs of parameters with quantified 

uncertainty 

• Given such quantified uncertainty, how does the nominal process design perform?

Uncertainty set 
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Robustness of Deterministic Solution
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• Uncertainty quantification studies yield 95% confidence intervals and covariances for 

uncertain parameter correlations

• Allows us to define ellipsoidal uncertainty sets for the pairs of parameters with quantified 

uncertainty 

• Given such quantified uncertainty, how does the nominal process design perform?

Deterministic solution rendered infeasible by changes in 

uncertain parameters, not robust feasible
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• Key question: How can we determine a process design that 

– maintains performance guarantees regardless of parameter uncertainties?

– is not overdesigned?

• Robust Optimization is a methodological framework to identify risk-averse solutions to 

optimization problems with uncertain data 

– Postulates an uncertainty set to describe data (no need for detailed probability distributions)

– Ensures solutions are valid for all realizations within the set = robust feasibility

Robust Optimization
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Need to develop a general approach that can

provide robust chemical process system designs across 

different types and ranges of uncertainty



• An iterative approach, alternating between optimization of master subproblems 

and identification of violated constraints in separation subproblems

• Sequentially solve relaxations until robust optimal solution is found

• Conceptually:

• In principle, this approach is generally applicable (no assumptions regarding 

model mathematical structure), but to-date has only been considered in the 

context of linear or convex models with inequality constraints

Robust Cutting-set Algorithm

9

Effort: Contextualize and generalize the Robust Cutting-set Algorithm for 

IDAES process design models

A. Mutapcic and S. Boyd, (2009). “Cutting-set methods for robust convex optimization with pessimizing oracles,” 

Optimization Methods & Software 24.3 (2009): 381-406.



Generalized Robust Cutting-set Algorithm
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GRCS Iteration #0
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Master problem solution: 0.900
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• Solve deterministic optimization model, obtain nominal design and cost

• Given this fixed deterministic design, solve the separation problem to find a 

𝑏1, 𝑏2 pair that leads to a violation of the capture constraint



GRCS Iteration #1
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GRCS Iteration #2

13

b
2

b1

F
ra

c
ti
o

n
 C

O
2

c
a

p
tu

re
d

Cost: 45.4

95% 

Feasible

Master problem solution: 0.900

Separation problem solution: 0.900

• Solve deterministic optimization model, obtain nominal design and cost

• Given this fixed deterministic design, solve the separation problem to find a 

𝑏1, 𝑏2 pair that leads to a violation of the capture constraint

The final design 

from Master #2 is 

globally proven to 

be robust feasible

(using BARON)



• The IDAES framework facilitates the development of complex process systems 
models and the quantification of underlying uncertainties

• The Pyomo programming environment enables the implementation of a specialized 
solver engine to identify cost-effective robust designs that possess 
performance guarantees despite this uncertainty

• Next steps for Robust Process Design effort:

– Devise protocols for reliable initializations of sub-problems within GRCS to 
ensure convergence

– Automation through model-independent implementation that can be tested 
against any IDAES model

Key Outcomes and Future Outlook
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