An overview of process intensification methods

Sitter, S., Chen, Q., & Grossmann, I. E. (2019). An overview of process intensification methods. Current Opinion in Chemical Engineering, 25, 87-94. https://doi.org/10.1016/j.coche.2018.12.006

Parallel cyclic reduction decomposition for dynamic optimization problems

Wan, W., Eason, J. P., Nicholson, B., & Biegler, L. T. (2019). Parallel cyclic reduction decomposition for dynamic optimization problems. Computers and Chemical Engineering, 120, 54-69. https://doi.org/10.1016/j.compchemeng.2017.09.023

Modern modeling paradigms using generalized disjunctive programming

Chen, Q., & Grossmann, I. E. (2019). Modern modeling paradigms using generalized disjunctive programming. Processes, 7(11), 839. https://doi.org/10.3390/pr7110839

Optimization-based design of active and stable nanostructured surfaces

C.L. Hanselman, W. Zhong, K. Tran, Z.W. Ulissi and C.E. Gounaris (2019). Optimization-based design of active and stable nanostructured surfaces. The Journal of Physical Chemistry C, 123(48), 29209-29218. https://doi.org/10.1021/acs.jpcc.9b08431

Nonlinear programming formulations for nonlinear and economic model predictive control

Yu, M., Griffith, D. W., & Biegler, L. T. (2019). Nonlinear programming formulations for nonlinear and economic model predictive control. In Raković, S., Levine, W. (Eds.) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-77489-3_20

Automated learning of chemical reaction networks

Wilson, Z. & Sahinidis, N. V. (2019). Automated learning of chemical reaction networks. Computers & Chemical Engineering, 127, 88-98. https://doi.org/10.1016/j.compchemeng.2019.05.020

Optimization opportunities in product development: perspective from a manufacturing company

Biegler, L. T., & Jacobson, C. A. (2019). Optimization opportunities in product development: perspective from a manufacturing company. In Garcia Muñoz, S., Laird, C. D., Realff, M. J. (Eds.), Computer Aided Chemical Engineering, Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, 47, 275-286. https://doi.org/10.1016/B978-0-12-818597-1.50044-8

PARMEST: Parameter estimation via Pyomo

Klise, K., Nicholson, B., Straid, A., & Woodruff, D. L. (2019). PARMEST: Parameter estimation via Pyomo. Computer Aided Chemical Engineering, 47, 41-46. https://doi.org/10.1016/B978-0-12-818597-1.50007-2

Dynamic optimization of natural gas network with rigorous thermodynamics under uncertainty

Liu, K., Biegler, L. T., Zhang, B. & Chen Q. (2019). Dynamic optimization of natural gas network with rigorous thermodynamics under uncertainty. In Garcia Muñoz, S., Laird, C. D., Realff, M. J. (Eds.), Computer Aided Chemical Engineering, Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, 47, (pp. 317-322). https://doi.org/10.1016/B978-0-12-818597-1.50050-3

A framework for optimizing oxygen vacancy formation in doped perovskites

Hanselman, C. L., Tafen, D. Y., Alfonso, D. R., Lekse, J. W., Matranga, C., Miller, D. C., & Gounaris, C.E. (2019). A framework for optimizing oxygen vacancy formation in doped perovskites. Computers & Chemical Engineering, 126, 168-177. https://doi.org/10.1016/j.compchemeng.2019.03.033